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Foreword of Prof. Donatella Sciuto

Writing a university textbook is no easy task. It requires a broad knowledge of
the material, an ability to explain it clearly and to inspire students to want to
learn more. Compared to commonly used tools such as lecture notes or slides,
a textbook requires far greater attention to detail, meticulous planning of the
approach, the order of the subjects and the level of detail for each part.

What a university textbook adds to other teaching tools is a critical approach
and reasoning. This entails not only meticulously listing data or technical
aspects but relating them to each other to develop a method in order to
challenge preconceived ideas. It is precisely the method, the ability to analyze,
which studying should provide us, not just a set of ideas, for which there are
other useful and complementary tools. Textbooks, however, educate the mind
and require a keen understanding of the material and ability to analyze and
summarize. Like a good teacher, they also inspire questioning, the basis of
any valid scientific principle.

In fact, this textbook stems from the considerable experience of its authors
who have taught this material and developed a flexible methodology over
the years. They have developed a flexible educational tool that allows for
the simulation of logic networks and the emulation of a system based on an
educational processor, used in this text as an example to explain the basic
concepts of a programmable digital system architecture. This book deals with
computers from the perspective of their logical structure and that of its lan-
guage. It provides enough ideas and examples for students to learn to program
directly using machine language. It emphasizes the conceptual, technological
and structural aspects, that is the hardware architecture of programmable
digital systems.

The book takes a bottom-up approach; the broad first chapter shows how
to “build” the architecture of a simple 8-bit processor step-by-step, detailing
every internal mechanism. The aim of the chapter is to give the fundamentals
of microcontroller design and also to make clear that design choices have an
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effect on how the machine performs and what it can do from the programmer’s
point of view. The book then introduces another 8-bit microprocessor, the
DMC8, inspired by the Z80-CPU. This processor is the heart of the rest of
the book, which deals with the issue from the perspective of initially having
to integrate the processor in a system and then programming it to perform
the required functions.

The book offers a “learning by doing” approach with very detailed examples
that help the reader develop analyzing and summarizing skills. The strong
connection between the book’s content and the Deeds (Digital Electronics
Education and Design Suite) environment makes this possible. The Deeds en-
vironment provides the simulation tools so students can master the concepts,
work through the examples and check how they work in a hands-on way.

Chapter 2 deals with the integration of the processor with the memory and
input/output subsystems by means of the bus. It also introduces the individual
components, the hardware elements required in the programming model and
the steps required to execute simple instructions. This chapter shows the
dynamic interaction among the different components through bus signals. The
chapter concludes with a presentation of the Deeds module that allows for the
emulation of the workings of the complete microcomputer system introduced
previously. A description of the steps from writing the assembly code to the
execution are provided.

Chapter 3 goes into greater detail on processor instructions, specifically for
the DMC8 and subprogram management mechanisms, while Chapter 4 de-
velops the subject of interfacing with input/output devices both in terms of
synchronization and data transfer.

All the chapters come with detailed examples and exercises with solutions
to help students understand microprocessors system architecture and their
own programming techniques. These skills are key to improving computer
designers’ and programmers’ understanding of what software applications can
do in relation to the characteristics of the underlying hardware.

Chapter 5 deals with implementation on programmable components such as
FPGAs of systems based on the processor presented in the textbook, creating
prototypes to check one’s own design on FPGA boards supported by the
Deeds environment and FPGA company-produced development tools. This is
a process of experimentation which is a good ending to this book and brings
the reader through the different phases of application design, so that they
may check what they have learned over the previous chapters on a physical
system.

This book will certainly be a useful aid for those teaching introductory ap-
plied microcontroller architecture courses. It provides students with detailed,
practical knowledge on how to create and design these devices, while enabling
them to set up workshops where they can carry out projects on their own.

Foreword of Prof. Donatella Sciuto
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There is a good balance between theory and practice in the book, which
provides students with tools related to content and methodology on the one
hand, and requires them to apply them on the other. If theory allows us
to apply an abstract analysis to a problem from the right distance, practice
brings us close to concrete scientific data. They go hand in hand.

This is a trend that will generally be more and more present in technical
engineering, which is open to a theoretical-creative approach in robustly au-
tomated environments. This is a step toward an approach that is free from
the recursive mental processes that we have learned to delegate to machines.

This will make a difference in the educational and professional experience of
engineers who must develop technologies, each component of which follows
an ethical approach and truly sustainable developmental principles that serve
social needs.

Foreword of Prof. Donatella Sciuto



Preface of the Authors

This textbook is the natural successor to “Introduction to Digital Systems
Design”, by the same authors1, which is a recommended reading.

In this book in fact, the authors offer the most open and general approach
to microprocessor systems design and programming. By starting from the
simplest examples and ending with medium-complexity problems, readers will
acquire the theoretical-practical bases to enable them to later extend their
programming knowledge to other types of microprocessors.

With this guiding aim, the text provides a brief reference on general computer
concepts, then dives into the subject of “how to design” a processor using an
initial “problem-solving” approach, based on knowledge of logic networks.

Starting from a simple design idea, we will build a computing network from
scratch and develop it step by step into a small processor with limited, basic
features, which can be programmed to perform simple tasks.

This process teaches students not only the basic architectural elements found
in all microprocessors, but also how to program them. First, programs will be
written in “machine language” and then, with the help of mnemonic code, in
“assembly language”. The resulting basic computing network will be able to
take decisions, a feature at the root of all microprocessors.

At the end of Chapter 1, interested students can use the large amount of
material developed to continue working independently on processor design.

After the basic concepts are introduced in Chapter 1, the aim and perspective
change as of Chapter 2. Here we deal with a complete microcomputer, not in
terms of a logic-gate-by-logic-gate analysis of the processor’s architecture, as
in Chapter 1, but on a slightly more abstract level.

1 G.Donzellini, L.Oneto, D.Ponta, and D.Anguita, “Introduction to Digital Systems
Design”, Springer, ©2019, ISBN 978-3-319-92803-6.
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The focal point is the functional aspects of the microprocessor and the ele-
ments connected to it. There is a particular focus on its set of instructions and
their relationship with the system components that the programmer should
manage directly.

The explanation takes on two perspectives, often simultaneously. The first is
that of systems engineers, who use their electronics skills to treat micropro-
cessors as components (as supplied by the producer) to integrate them into
a more complex system. The second is that of programmers who use their
computer science and electronics skills to fulfill the required specifications,
while making the most of the hardware available.

Chapter 3 deals in detail with microprocessor instructions from a program-
mer’s perspective, and adds numerous examples to fully understand their be-
haviour. Subjects like “call and return” instructions for manage subprograms,
“delay loops” and other programming techniques common in microprocessor
systems.

Chapter 4 deals with so-called “interrupts”. This technique, which is used in
all types of microprocessors, enables the interruption of a program’s normal
execution flow, and the execution of another if the system components directly
command it.

Thus, we will see how to interface a microprocessor system with other devices,
paying special attention to the way two or more systems interact by using
parallel and serial connections.

In some cases, we will use input/output components expressly designed for
our purposes. This way, students will be well positioned to understand the
basic concepts without spending too much time on commercial components,
which while highly configurable, are often very complex, hard to deal with
and ill-adapted for educational use.

In Chapter 5, the focus shifts to tests and trials on real systems. Technology
has made a wide array of programmable components called FPGA2 avail-
able. There are also myriad prototype boards based on them called “FPGA
boards.” These days, we can discard the idea of a system made of prefab-
ricated components connected together since re-programmable hardware is
available.

FPGA components have made it possible to quickly produce project proto-
types, thus saving time and production costs. On one single FPGA chip, we
can build a system including a microprocessor, memory and any accessory
device we would like (within the limits imposed by the FPGA hardware).

Aside from the theoretical elements, this book offers a large number of ex-
amples and exercises with solutions to help students hone and solidify their

2 Field Programmable Gate Array

Preface of the Authors
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understanding. They can derive great educational benefits from using the
Deeds simulation tool3 (Digital Electronics Education and Design Suite), de-
veloped by one of the authors, Giuliano Donzellini, to support Engineering
and Computer Science students in their learning and lab work.

The close connection with Deeds is a strong point that renders this book
unique in that schematics, programs and exercises, from the simplest to the
most complex, were created with Deeds and are immediately available online
for simulation. Deeds covers all the main facets of digital systems projects,
including combination and sequential networks, finite state machines, user-
defined components and especially microprocessor systems suitable for “as-
sembly language” programmable “embedded” applications.

The environment supports a microprocessor created for educational purposes,
the DMC8. In devising the DMC8 the creators used a technically and histor-
ically relevant 8-bit microprocessor as a model, the Z80-CPU by Zilog, but
it also has a compatibility mode with the earlier I8080 by Intel. The DMC8
maintains much of the architecture of the Z80-CPU and the I8080 but its
structure is simplified and a few elements have been added to bring it closer
to more recent microprocessors. The DMC8 can be programmed by using the
assembly language of either of the processors it derives from.

Deeds was developed with an educational and semi-professional purpose in
mind so it needed to be very user-friendly while at the same time usable for
complex projects. The main differences between Deeds and a professional sim-
ulator are the simple, direct interface and the vast collection of educational
and project materials. Deeds is a continuously evolving, “living” system; up-
dates are periodically available to improve the existing tools and to add new
ones. The same is true of the educational materials.

The transition toward FPGA devices happens because one can export an
entire Deeds-created and -simulated project into a professional tool and then
actually test it on the hardware. Deeds makes it possible to avoid the complex-
ity of the whole process, which is normally inevitable in a specific professional
software. Thus access to these devices is immediate and intuitive.

3 https://www.digitalelectronicsdeeds.com

Preface of the Authors
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Teaching Objectives

Based on the authors’ experience, the whole book including the Deeds project
exercises and simulations can be used in an introductory microprocessor sys-
tems course.

Below is a schema of the contents of each chapter. Subjects that could be
omitted without sacrificing course continuity are commented with notes in
italics :

1. Introduction to programmable computing networks

→ A general introduction to microprocessors

The next five sections of the chapter can be omitted if the course is
mainly on programming:

→ Design of a programmable computing network
→ Sequencing, microinstructions and microprograms
→ Jumps, loops and decisions
→ Input and output ports
→ Constants, variables and read/write memory

2. A system based on the DMC8 microprocessor

→ The DMC8 microprocessor
→ Bus signals and timing
→ Input/output and memory subsystems
→ Introduction to Deeds-McE

3. Programming the DMC8

→ Introduction to assembly language programming
→ Addressing modes
→ Types of instructions
→ Subprograms and the Stack area
→ Programming examples

4. Interfacing with external devices

→ Managing communication with external devices
→ Hardware-supported handshake
→ Polling

If the course does not deal with interrupts, the next four sections in
the chapter can be omitted.

→ Interrupt techniques
→ Using vectored interrupts
→ Interrupt timers
→ Examples of programming and interfacing

Preface of the Authors
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5. Microprocessor systems on FPGA

If the course does not include laboratory activities, or does not deal
with FPGAs, the entire chapter may be omitted.

→ Introduction to FPGAs
→ The architecture of FPGA components
→ FPGA development tools
→ The FPGA boards used in the examples
→ Microprocessor system prototypes on FPGA
→ Project examples

How to Use the Book

The strong connection between this book and the Deeds environment should
encourage the reader to use it along with the simulation tools to actively test
out the concepts and procedures in the textbook examples.

Another benefit is that readers get solutions to all the system design and
programming exercises. Learning by doing helps students progressively build
their analytical and organizational skills, which is the aim.

Preface of the Authors



Digital Contents of the Book

This textbook alternates between theory and practice (examples, exercises
and solutions). All the examples and exercises were created with the Deeds
simulator, which is available at this address:

https://www.digitalelectronicsdeeds.com

The site describes the simulator and gives instructions on how to download
and use it (using Windows or other operating systems with the appropriate
virtual machines). The simulator is to be used locally so it does not require
constant internet connection.

The site also has accessory material, Deeds schematics and programs, related
to all the figures and examples in the book. Finally, the site offers all the
materials needed to do the exercises and test the solutions with Deeds.

The site is set up with the same chapter, section and subsection titles as the
textbook itself, so it is easy to use. In the future, the site will host any updates,
corrections or improvements that will be made to the book.

XVII
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1

Introduction to programmable computing
networks

Abstract After a brief opening to the microprocessors’ world, this chapter
will gradually introduce the idea of building a digital programmable network
able to solve different problems. The reader will be led through the basics of
microprocessors, introducing step by step the microcomputer architecture’s
cornerstones. Several concepts, such as sequencer, ALU, registers, RAM and
ROM memories, and input/output ports will be presented. At the same time,
the reader will learn how to program the network exploiting, for the first time,
machine codes, mnemonic codes, assembly language, and microprogramming.
At the end of the chapter, the reader will be able to understand the compo-
nents of more complete microprocessors.

1.1 A general introduction to microprocessors

Microprocessors are one of the most commonly used devices in digital elec-
tronics. They include the fundamental parts of a digital computer, integrated
into a single component. They are the central element in personal computers,
tablets, smartphones and printers, but are found in many other devices such
as satellites, cars, industrial plants or wherever a large number of arithmetical-
logical calculations are needed.

Digital computers help us to solve Physics problems such as how to calculate
the trajectory of a missile or asteroid, or even that of an object in a virtual
environment like a video game. They help solve monitoring problems such as
calculating the maneuvers a satellite must execute to stay in geostationary
orbit, or what a robotic arm must execute to cross the shortest distance to
grasp an object. Essentially, they help with any problem that requires numer-
ous calculations to solve and decisions based on the results.
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2 1 Introduction to programmable computing networks

1.1.1 A brief history of microprocessors

The production of microprocessors is possible today because of the develop-
ment of low-cost, integrated circuit technology on silicon LSI and VLSI1 chips
in the 1970s. These chips made it possible to create very small (a couple mm
per side) yet sufficiently complex integrated circuits. One of the best-known
integration technologies is the SGT (Self-aligned Gate Transistor), which is
still largely in use in microprocessor production today.

The first microprocessor made with this technology was called 4004, and was
sold by Intel in 1971 under the direction of Federico Faggin2. The micropro-
cessor was very limited; it worked with only one 4-bit unit of calculation. At
that time, however, the novelty was that all its circuits were included on a
single integrated component, reducing the cost of production.

Although the product was still very new, the potential commercial success
of this type of electronic device was clear. The relatively low cost of produc-
tion together with product’s versatility made it the ideal component for an
economy of scale.

The first commercially successful microprocessor was the Intel 8080, which
could perform 8-bit arithmetic and logical operations back in 1974. In those
same years other big companies designed and commercialized their micropro-
cessors: the Z80 (Zilog), the 6800 (Motorola) and the 6502 (MOS Technol-
ogy). In the ensuing years, the great potential of microprocessors, together
with their low cost brought about the age of the first Personal Computers like
the first APPLE II (based on the 6502) and the IBM PC, initially based on
the 8088, a low-cost version of the 8086 made for industrial applications.

Over the next decades, microprocessors became ever more complex and effi-
cient. Some examples are the Motorola 68000 (and its successors); the Intel
80286, 80386 and 80486; the whole Pentium series and the Core I7, just to
name a few commercial successes. ARM microprocessors, by “Advanced Risc
Machines”, can be found in most smartphones today (for example the ARM
Cortex-A8 chip).

1 Large Scale Integration and Very Large Scale Integration. LSI has 100 to 9,999
logic gates in a single component; VLSI has from 10,000 into the millions and
beyond.

2 Federico Faggin (class of 1941) is an Italian physicist, inventor and entrepreneur
who became a US citizen in 1968. At Intel, he was responsible for developing
the 4004, 8008, 4040 and 8080 microprocessors. He also worked in integrated
circuit technology. He developed MOS (Metal Oxide Semiconductor) technology,
a prime example of which is the SGT (Self-aligned Gate Transistor), that came
with the first microprocessors with connectable memory. In 1974, he resigned from
Intel and founded Zilog, a company exclusively dedicated to microprocessors, and
created the famous Z80-CPU. Later, he co-founded the Synaptics company (that
created the first touchpads and touch-screens).
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Depending upon the type, today’s microprocessors can consist of hundreds of
thousands or even billions of transistors integrated on one single silicon (or
another semiconductor material) chip.

1.1.2 Types of microcomputers

Microprocessors and microcomputers are not the same. Simply put, micro-
processors, also known as Central Processing Units (CPUs), are the central
elements of microcomputers. In fact as we will see in the following, a micro-
computer is a complete system that includes the microprocessor plus other
devices: memory, data input/output circuits, etc. Personal computers, tablets
and smartphones are all examples of microcomputers.

When all the devices of a microcomputer are integrated on a single device, it
is called a single-chip microcomputer. A specific type of single-chip microcom-
puter is called a microcontroller. As the name suggests, a microcontroller is
designed for control applications. In addition to the basic elements of all mi-
crocomputers, we find specialized input/output modules designed to control
industrial plants and/or dedicated systems such as timers, Analog to Digital
Converters (ADCs) and Digital to Analog Converters (DACs).

A microcomputer inserted within a more complex system is “embedded”. In
this type of application, the user sees and uses the whole system without
directly noticing any microcomputers within it. In everyday life, for example,
we find microcomputers and microcontrollers used in televisions, multimedia
apparatus, home appliances, cars and video and music players.

Another type of specialized microcomputer is the Digital Signal Processor
(DSP), expressly designed and optimized for signals engineering with digi-
tal techniques. Consider audio signals engineering in multimedia systems, for
example the sound cards in personal computers, musical instruments, music
workstations or motion picture production.

1.1.3 Microcomputers and systems

A standard microcomputer inserted into a system performs the following func-
tions:

• acquires external data
• stores data
• processes data, produces and stores results
• based on those results, takes action within the system

Consider, for example, a microcomputer used in industrial plant control. The
data are acquired through sensors or transducers in the plant (speed sensors,
pressure sensors, temperature sensors, etc.); after the data are stored and
processed, the microcomputer will use those results to take action in the
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plant through specific actuators (motors, electromagnets, hydraulic pistons,
solenoid valves, electric brakes, etc.).

In principle, one could design a complex digital sequential network based on
logic gates and basic memory units instead of a microcomputer, and it could
perform the same functions (a “wired system”). That said, this type of system
would be so complex it would barely be manageable in the design phase or in
maintenance. It would be “dedicated” specifically to a particular application
and its operation algorithm3 would not be modifiable a posteriori without re-
designing and rebuilding it because the way it works depends on the specific
connection between its logic devices.

Aside from the aforementioned technical reasons, the production of a dedi-
cated circuit can only be justified by an economy of scale or the lack of an
alternative component. In any case, only very large companies can afford to
produce dedicated circuits.

A microcomputer control, however, has numerous advantages; it allows for far
greater efficiency and flexibility. The sequence of operations to compute is ob-
tained by the designer through a program written in a language the machine
understands (this refers to a programmed system). The system’s architec-
ture was devised to make it possible to change the sequence of operations to
carry out without changing the circuits that execute them (the hardware),
but rather by changing only the program (the software).

One advantage of microcomputers is precisely their general, modular type of
architecture, which is adaptable to specific applications by choosing the right
devices and writing the right programs.

Often, the same commercial system can be used in different applications by
simply changing the program that determines how it functions. Furthermore,
the standard, modular architecture generally makes it possible to keep design
costs low since the designers and programmers reuse the same functionalities
for a wide range of projects.

1.1.4 The basic structure of a generic computer

One of the basic features of a digital computer is its ability to execute ordered
sequences of instructions rather quickly. A list of instructions is called a pro-
gram and it is executed through a special internal structure made expressly
to carry out instructions.

3 An algorithm is a process that provides a solution to a problem in a finite number
of well-defined steps. The term “algorithm” comes from the transcription into the
Latin alphabet of “al-Khuwārizmı̄”, habitational surname of Persian mathemati-
cian, Muhammad ibn Mūsa, who lived in the 9th century AD. He was among the
first to describe the concept of an ordered procedure to solve problems. In the
theory of information, a problem is defined as computable if it can be described
with an algorithm.
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An instruction is an order sent to a machine that identifies a specific and lim-
ited sequence of basic operations that the machine will carry out. A computer
is designed to execute a finite set of instructions. For example, one instruction
might be to copy a group of bits from one memory element to another; a
second instruction might be to perform an addition or to increase a number
by one, etc.

Aside from the base function of carrying out mathematical calculations, an-
other important feature of computers is that they can make decisions based
on data processing results. These decisions translate into the execution of
different tasks depending on the decision that was made.

The most commonly used architectures in computer production today are the
Von Neumann4 and the Harvard5. The Von Neumann architecture has been
in use since the dawn of the computer, that is since the 1940s. It was devised
for maximum circuit simplicity and can be broken down into three blocks,
from a logical point of view (see the figure below).

On the upper left hand side we see the Central Processing Unit (CPU); on
the right, the Memory subsystem (Memory); while the lower block is the
Input/Output subsystem, which allows the computer to receive data from the
outside world and return the processing result to it.

4 John Von Neumann (1903-1957), Hungarian mathematician, physicist and scien-
tist, who taught Mathematical Physics at Princeton University (USA). In 1945 he
published the First Draft of a Report on the EDVAC (Electronic Discrete Variable
Automatic Calculator), one of the first electronic digital computers based on the
binary number system, which he helped develop as a consultant. The architecture
is named after him although it was initially devised by designers John Mauchly
and John Presper Eckert (University of Pennsylvania), who also invented the
previous ENIAC (Electronic Numerical Integrator and Computer) based on the
decimal system.

5 The term refers to the architecture of one of the first digital, electromechanical
computers, the Harvard Mark I (1943), designed by Howard Hathaway Aiken
(1900-1973), at Harvard University (USA).
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A Von Neumann machine is based on the following base criteria:

— there is only one processing unit (the CPU)
— only one instruction is executed at a time (within the CPU)
— the memory contains both the data that the computer works on and the

programs that process that data.

The CPU plays a fundamental role, in that its job is to take the instructions
that make up the program from the memory and execute them one by one.
The calculation of one instruction can correspond to one basic calculation, an
addition for example, or an exchange of data with the memory or the outside
world.

The whole system will execute only the tasks required by the program (and
by extension, the programmer who wrote it), no more, no less. It does nothing
autonomously, nothing that doesn’t derive from the individual instructions.

The Harvard architecture is a variation on that of Von Neumann, and it
differs on the last criterion. Its data and programs reside in different memory
subsystems and are separately accessible (see the figure below).

In the Von Neumann machine, the CPU is required to execute memory access
instructions in sequence, whereas the Harvard architecture makes it possible
to get program instructions and access data at the same time. The more
expensive Harvard architecture is cost-effective when the size of the data is
similar to that of the programs.

The most commercially available computers are based on the Von Neumann
architecture. Some microcontrollers and digital signal processors use the Har-
vard model.

1.1.5 The common bus connection

A microcomputer based on Von Neumann criteria is normally organized
around one single common bus (see the figure below). A bus is a bundle of
parallel wires shared among the different system units. Its name is related to
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the bus of public transportation and in fact, these wires transport information
from one unit to another.

This type of connection is used mainly because it is economical and modular.
The figure shows the three blocks mentioned previously. Communication hap-
pens among them through the bundle of wires (the bus) that runs through
them. Only one unit at a time can use these wires to send information on the
bus, while it is possible for the other units to receive it simultaneously.

The unit that transmits data at any point is called the “talker”, while the
receivers are “listeners”. The unit that manages who can use the bus wires at
any point is the “master” (or “arbiter”), while the others who obey are the
“slaves”. There are “multi-master” systems, but here we will limit ourselves
to systems with the CPU as the only master.

Let’s look at the advantages and disadvantages of a bus connection. All the
subunits of the system are connected by the same bundle of wires making
the bus a shared resource. Clearly, all the devices sharing the same bundle of
wires may pose a functional limitation: if two subunits are engaged in dialog,
the bus is unavailable to any other subunit.

If we connect the individual units through reserved connections we get a
potentially much quicker “star” system (a fully connected system). The figure
below shows a generic star system.

Nonetheless, this is not in principle, a severe limitation for a microcomputer
with Von Neumann architecture since only one operation will be executed at
a time. What is more, a bus connection is far more economical than a star
system, which would require many more wires for the dedicated connections.
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An advantage of the bus connection is that it is modular. For example, one
could add new memory or input/output elements if needed, just by connect-
ing them to the bus without having to add dedicated connections. Another
advantage of it being modular is that a bus can be standardized, that is its
specs can be defined by more than one builder. This means any computer
add-ons that are commercially developed can be compatible with each other.

Lastly, a bus system has added benefits from the diagnostic point of view
for both the project development phase and maintaining a system in use.
In fact, a bus is easier to observe than a star system; one can troubleshoot
malfunctions more easily by connecting a diagnostic system to the bus wires
and seeing what is exchanged among the different modules.
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1.2 Design of a programmable computing network

The introduction on general terms and concepts of the world of micropro-
cessors is now completed. Then reader can begin step by step to learn the
fundamental components and mechanisms that make up microprocessors and
allow them to run.

In this chapter, we will take the point of view of digital network designers who
must build a programmable computing network from components and their
own basic skills. We begin with a simple, introductory design specification
and make it more and more versatile until a sort of precursor to a 8-bit
microprocessor is reached.

This is a bottom-up approach where readers (helped by the authors) take the
role of a designer who needs to create a programmable network that can solve
a vast array of problems, without having to redesign the same circuit each
time.

As of Chapter 2, we will analyze the complete and tested architecture of a
microprocessor. The point of view adopted will be different; the goal will no
longer be to study the logical working of the network in minute detail. This
time, the explanation will focus on programming techniques and on the design
of systems based on microprocessors intended as component.

1.2.1 The design specification: a dedicated computing network

Let’s imagine we have been asked to design
a digital network that can calculate the aver-
age of four whole positive numbers (OP3, OP2,
OP1, OP0), less than 64 (6 significant bits).

The result RES will also be a 6-bit whole num-
ber (see the figure at the right).

1.2.1.1 Combinational solution

Imagine a purely combinational circuit that calculates the average by first
adding the four operands inputted through a cascade of adders (see the fol-
lowing figure).

We can divide by 4 through a scaled output connection (scaling an output
two positions to the right reduces the weight of each bit by a factor of 4). In
the calculation sample in the figure, we get 5 as an average of 3, 2, 9 and 6.
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Some advantages of this solution are that it doesn’t require a clock and pro-
cessing the result is relatively quick (it takes at most 3 times the time it takes
for each adder to calculate the sum).

On the other hand, the network is difficult to reconfigure. For example, if one
needed to add more operands in the input or raise the number of bits of the
operands, the circuit would need to be redesigned and remade, which would
add to costs.

If we needed to have one single network model that was able to be reused in
a wide range of cases, we could design an oversized circuit equipped with a
large number of operands and more bits.

Nevertheless, this would be underutilized in many applications and we would
be using a network that would be too expensive for the specifications. For other
applications, it might not be enough and this would require us to redesign it.
If the level of complexity is decided a priori, the network will always be very
specialized.
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1.2.1.2 Sequential solution

To get a more versatile and reconfigurable solution, we can assume we’ll use
one single adder with a parallel register. With only one adder available, we
must execute sums one by one as we memorize the partial results in the
register.

The clearest advantage of this approach is that the number of operands to
add is independent of the number of adders in the circuit. The figure below
shows the circuit schematic.

To add an operand, we show its value at input OP and enable the register
for one clock cycle CK (by activating EN). Clearly, first we have to clear the
register so that we add zero to the first operand.

Doing all these operations manually is obviously cumbersome so we will need
to add a “controller” to our arithmetic network (the “datapath”) to automat-
ically sequence the operations. It is also inconvenient to read the operand on
only one input. Also the network still cannot execute the final division.

Adding these observations to the initial specifications, we can complete our
datapath schematic, as shown in the figure below.
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As we can see, the operand to add at a particular moment (OP3, OP2, OP1
or OP0) is chosen by a 4-channel multiplexer6.

6 Notice that if we wanted to raise the number of operands, we shouldn’t change
the arithmetic part but rather add a larger multiplexer. This is valid until the
summation of operands no longer exceeds the maximum number expressible by
the arithmetic part.
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To make the schematic easier to understand the data acquisition subsystem
in the input is enclosed in a frame marked “Input Data”. Channel selection
is controlled by P1 and P0. At the point of the simulation captured in the
figure, lines P1 = ‘0’ and P0 = ‘1’ make it so that operand OP1 is routed by
the channel selected by the multiplexer at the adder input. See the arrow in
the figure.

The parallel register has been replaced by a “universal register”, whose func-
tioning is controlled by lines S1 and S0. This way, we can order the register to
shift its contents two positions to the right at the end of the addition opera-
tions. The table below shows the functions obtained by the universal register
depending on the values of S1 and S0.

S1 S0 Function

0 0 Content does not change

0 1 “Right” shift

1 0 “Left” shift

1 1 Parallel loading

In the simulation in the figure, we can see that the number ‘00000110’ is
in the register. The adder adds this number to the one from operand OP1,
‘00001001’, since it was chosen by the setting of P1 and P0. We can see the
result in the output: ‘00001111’.

At the next rising edge of the clock CK, S1 and S0 being set to ‘1’ means that
the output from the adder will be memorized in the register. The new partial
result will replace the previous one.

After defining the network datapath, now we need to take care of the au-
tomatic sequencing of lines S1, S0, P1 and P0. So let’s add a Finite State
Machine (FSM) controller, which gives us the definitive schematic. See the
following figure.

Moreover, the network has an added END output that comes from the con-
troller and signals the end of a calculation.

In summary, the universal register is used in this architecture to memorize
the intermediate results of a sum and to double shift them to the right.

From now on, we will refer to this register as “Accumulator”, since it can
memorize (accumulate) the partial results of calculations. Also, the output
that visualizes the content will be called ACC.

The FSM functions as a system “Controller”, also known as “Sequencer”. That
is it produces the correct sequence of signals to send to the other components
of the “Datapath” that process the data to execute the task (in our case,
calculating the average).
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1.2.1.3 The sequencer algorithm

The Algorithmic State Machine (ASM) chart at the right
describes how the algorithm of the sequencer works.

In state (a) the lines S1 (=‘1’) and S0 (=‘1’) order to load
the data available on the adder output into the accumu-
lator. It is the same as the sum of operand OP0 (selected
by the multiplexer setting P1=‘0’, P0=‘0’) and the con-
tent of the register itself, which was cleared by the. Reset
before (in other words, the value of the operand is loaded
in register OP0).

In state (b) the register is ordered (S1=‘1’, S0=‘1’) to
load the value from the adder, which is the same as the
sum of operand OP1 (selected by the multiplexer setting
P1=‘0’, P0=‘1’) and the register itself, which as we have
seen is the same as operand OP0.

In state (c) the accumulator (S1=‘1’, S0=‘1’) is called
on again to memorize the value generated by the adder.
In this case, the sum of operand OP2 (choosing P1=‘1’,
P0=‘0’) is the current content of the register (the sum of
operands OP0 and OP1).

In state (d), we maintain S1=‘1’ and S0=‘1’, and order
the register one last time to load the output from the
adder, which is the same as the sum of operand OP3
(choosing P1=‘1’, P0=‘1’) and the content of the reg-
ister itself, that is the sum of operands OP0, OP1 and
OP2. After this final operation, the total sum of of the 4
operands will be in the register.

In states (e) and (f) we order the register to right shift its content twice and
to insert a zero to the left side thus dividing by four.

In state (g) the END output is activated to indicate the “end of process”, and
the FSM stands by until it is reset.

1.2.1.4 Simulation

Timing diagram simulation allows us to examine the evolution of signals as
of the initialization of the system. See the figure below.

We can see the change of control signals S1, S0, P1 and P0 at each rising edge
of the clock CK. The result of the (Sum) is loaded onto the register at edges
2, 3, 4 and 5. On edges 6 and 7, the contents right shift. Finally, the END
output indicates that computing has ended (RIS = 5).
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1.2.2 Counter and ROM memory based sequencer

A much more general type of sequencer is made up of a counter addressing
a ROM memory (see Appendix A.1) that contains the sequence of control
signals to emit. See the figure below.



1.2 Design of a programmable computing network 17

This type has a great advantage: there is no need to resynthesize the FSM
each time we want to change the sequence to execute. All that is needed is to
change the bits in the ROM.

In other words, the “physical” hardware of our circuit can remain the same (it
won’t need to be redesigned or rebuilt); we only need to change the contents
of the memory.

For our network, we have chosen to use an 8-bit binary, universal counter that
counts forward, starting from zero when it is reset. Line EN lets us start and
stop the count.

With 8 address bits we can read the 256 ROM locations. Memory addresses
also have 8 bits so we can connect at most 8 bits of control line to the datapath
(denoted in the figure as D7, D6, ..., D0).

As an example, in the figure above, the counter has reached number “00000011”,
during the simulation. The memory gives the value “11000011”, which is con-
tained in the location at that address.

So let’s replace the FSM with the new sequencer and get the schematic in the
figure below. Only 5 of the 8 output lines have been used from the ROM, P1
and P0 at bits D7 and D6, S1 and S0 at bits D1 and D0. We will only use
D4, D3 and D2 in the next example.

The datapath is identical to the one in the previous network except for a small
modification on line END. As we can see, line END was brought back to the
counter by a NOT, so that when it is activated, it will make it possible to
disable the counter and stop the sequence.
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The ROM contains the ordered sequence of control signals to send to the
components. In this version, we want it to be identical to the one generated
by the previous circuit’s FSM.

When the system is reset, the counter is initialized to zero so the memory will
send the commands that are held at the zero address. So, this location must
contain the signals emitted by the previous version’s FSM in state (a), the
reset state. At the next rising edge of the clock the counter increments by one
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and sends out the contents of the second location, which should contain the
signals that the FSM emits in the second state...and so on for the rest of the
locations.

By following this approach, we complete the programming of the memory
locations and get the result shown in the table below. Next to each ROM
location, we see the corresponding state of the previous FSM. We are not
interested in the other memory locations so they can contain any code since
our network doesn’t address them.

ROM Contents FSM

Address (Hex) P1 P0 END x x x S1 S0 State

00000000 00h 0 0 0 0 0 0 1 1 (a)

00000001 01h 0 1 0 0 0 0 1 1 (b)

00000010 02h 1 0 0 0 0 0 1 1 (c)

00000011 03h 1 1 0 0 0 0 1 1 (d)

00000100 04h 0 0 0 0 0 0 0 1 (e)

00000101 05h 0 0 0 0 0 0 0 1 (f)

00000110 06h 0 0 1 0 0 0 0 0 (g)

00000111 07h ... ... ... ... ... ... ... ... ...

00001000 08h ... ... ... ... ... ... ... ... ...

Our network is growing more complex but also more versatile. By introducing
ROM memory in the sequencer, we have made the behavior of the circuit
more easily redefinable.

1.2.3 Extending computing possibilities

Having only the adder available doesn’t offer many degrees of freedom in
using the system, but when new components are introduced, the circuit’s
possibilities begin to get more interesting. Consider the option of replacing
the adder with a combinational network that can execute different operations
like adding, subtracting, logical operations, etc.

If we add computing options, we can define much
more versatile operation sequences. Logic networks
that can execute different mathematical and logical
operations are called Arithmetic Logic Units (ALUs).
The table to the right shows a possible set of exe-
cutable functions.

Let’s design an ALU that carries out this set of func-
tions. The figure below shows our result.

Function

A+B

A - B

A and B (bitwise)

A or B (bitwise)

not A

not B

A

B
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The schematic is made up of arithmetic and logic circuits each of which exe-
cutes one of the functions listed above on the input operands. The individual
circuits’ outputs merge into an 8-channel selector that allows us to choose the
operation we want at output F in function of inputs S2, S1 and S0.

Notice that the network is purely combinational. The table below shows the
ALU’s functions depending on its control inputs S2, S1 and S0.

S2 S1 S0 Function

0 0 0 A+B

0 0 1 A - B

0 1 0 A and B (bitwise)

0 1 1 A or B (bitwise)

1 0 0 not A

1 0 1 not B

1 1 0 A

1 1 1 B

In the schematic, we find a complementer component across from the adder.
When we subtract A-B, this is calculated as A+C2(B). Two’s complement is
calculated by inverting all the bits of operand B and adding ‘1’. We add ‘1’
by setting the adder’s input (Ci) equal to ‘1’, in the case of subtraction.

There are also two auxiliary outputs called ZF (Zero Flag) and CO (Carry
Output). ZF signals when the result is zero, while CO activates whenever
the circuit generates a carry after adding (or a borrow request in the case of
subtraction).

The auxiliary outputs are called “Flags” and are very useful when evaluating
the result of processing, as we will see ahead. For example, when subtracting,
we can establish if the two operands are equal and if not, which is greater
than the other.

We can do this by assessing the value of the flags
after the operation. See the table on the right. If the
zero flag ZF is activated, the operands are equal. If
not, the carry output CO is active only if A < B. This
convention is used in Intel processors, for example.

Flags

Result CO ZF

A = B 0 1

A > B 0 0

A < B 1 0

In commercial processors, there are also other types of flags such as the Parity
Flag PF that indicates if the number of bits at ‘1’ in the ALU result is even
or odd. Here, we will only consider the basic flags.
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1.2.4 ALU-based computing networks

The figure below shows a very similar network to the one shown above, but
this one has an ALU rather than a simple adder.
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Also, the schematic differs from the previous one by the fact that the ALU
set-up wires are connected to the ROM output lines. The table below shows
a summary of the connections between the 8 ROM lines and the control lines
used in the datapath.

D07 D06 D05 D04 D03 D02 D01 D00

P1 P0 END F2 F1 F0 S1 S0

The new network can calculate the average of the four values with the same
bit setup as in the previous version’s ROM, with no modifications.

ROM Contents

Address P1 P0 END F2 F1 F0 S1 S0 (Hex)

00h 0 0 0 0 0 0 1 1 03h

01h 0 1 0 0 0 0 1 1 43h

02h 1 0 0 0 0 0 1 1 83h

03h 1 1 0 0 0 0 1 1 C3h

04h 0 0 0 0 0 0 0 1 01h

05h 0 0 0 0 0 0 0 1 01h

06h 0 0 1 0 0 0 0 0 20h

In the previous version in fact, we had forced the unused lines to zero whereas
now they (here renamed F2, F1 e F0) control the ALU’s function and the
configuration ‘000’ corresponds precisely to the function of the sum of the
two operands.

1.2.4.1 Another computing example

Here, let’s recap what our logic network is capable of in its current configu-
ration:

1. carry out up to 256 operations in sequence
2. carry out 8 arithmetical and logical operations, such as adding, subtracting

and bitwise (AND, OR, NOT) logical operations
3. generate ZF and CO flags to give the user an evaluation of the operands

and the result (the result of these evaluations is not yet reusable by the
network itself in this version).

Now, let’s define another computing example. We want a sequence of oper-
ations that evaluates if the result of the sum of operands OP0 and OP1 is
greater than equal to or lesser than operand OP2.
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The execution of the sequence can be divided into 3 steps:

1. adding operand OP0 to operand OP1
2. subtracting operand OP2 from the previous result, generating flags ZF

and CO, and stopping the computing sequence
3. evaluating the flags.

Our network can carry out the first two steps if the ROM memory is pro-
grammed appropriately. The last step must be carried out by an end user or
another logic circuit.

— P1 and P0: govern the selection of input operands OP3..OP0
— END: is used to stop the sequencing
— F2, F1, F0: define the operation of the ALU;
— S1, S0: control the function of the universal register.

Carrying out step 1) means: selecting operand OP0 through the multiplexer,
setting P1=‘0’, P0=‘0’; commanding the ALU to copy the operand OP0 to its
output (F=B) and therefore setting F2=‘1’, F1=‘1’ and F0=‘1’; commanding
the accumulator to update its contents with the result coming from the ALU
(in other words, operand OP0), setting S1=‘1’ and S0=‘1’. Obviously, we must
set END=‘0’. Thus we end the coding of the first location of ROM memory:

P1 P0 END F2 F1 F0 S1 S0 Description

0 0 0 1 1 1 1 1 A ← OP0

Then, we select operand OP1 making P1=‘0’ and P0=‘1’; command the ALU
to add the contents of the accumulator to operand OP1, defining F2=‘0’,
F1=‘0’ and F0=‘0’; and force the update of the content of the accumulator
with the result from the ALU (S1=‘1’, S0=‘1’). The next ROM location will
then have the following values:

P1 P0 END F2 F1 F0 S1 S0 Description

0 1 0 0 0 0 1 1 A ← ( A + OP1 )

At step 2), to subtract operand OP2 from the result in the accumulator we
must command the multiplexer to select operand OP2 (P1=‘1’, P0=‘0’) and
to the ALU to subtract (F2=‘0’, F1=‘0’, F0=‘1’). Below we see the contents
of the third location:

P1 P0 END F2 F1 F0 S1 S0 Description

1 0 1 0 0 1 0 0 ( A - OP2 )

To stop the sequence at the end of this operation, we set END=1.

Note that the result in the accumulator is not set to load (S1=‘0’, S0=‘0’).
This is because the operands from the subtraction at the ALU input must
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remain stable until we can see the value taken by the flags. The table below
shows the final evaluation (step 3).

Final Evaluation

Result CO ZF

(OP0 + OP1) = OP2 0 1

(OP0 + OP1) > OP2 0 0

(OP0 + OP1) < OP2 1 0

Here below is a summary of the codes to insert in the ROM.

ROM Contents

ROM Address (Hex) P1 P0 END F2 F1 F0 S1 S0 Description

00h 0 0 0 1 1 1 1 1 A ← OP0

01h 0 1 0 0 0 0 1 1 A ← ( A + OP1 )

02h 1 0 1 0 0 1 0 0 ( A - OP2 )

1.2.5 The “instructions”

Since the machine carries out the operations that we put into the memory,
from now on we will call the operations the network can do “instructions”.

Defining the instructions in the ROM bit by bit can be a long, boring job
easily subject to errors. To make this easier, we’ll introduce mnemonic codes
that we’ll associate to every possible instruction.

This way it will be easier to define the contents of the ROM. We will simply
express the algorithm that we want to perform in terms of mnemonic codes,
which can be easily translated into the corresponding binary code (also known
as “machine code”).

The writing phase of the mnemonic codes will be supported by a text editor,
and the translation into machine code will be done later.

Going back to the example above, shifting operand OP0 into register A was
done using the following code:

P1 P0 END F2 F1 F0 S1 S0 Description

0 0 0 1 1 1 1 1 A ← OP0
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This machine code could be associated to this mnemonic:

IN A,OP0

where the IN refers to “Input”, getting an operand from outside; the A, which
stands for accumulator register, is the destination of the operand, and the OP0
after the comma represents the source of the operand. This use of mnemonic
codes is common in technical manuals for microprocessors.

Naturally we need to define a similar code for the remaining operands. See
below:

IN A,OP0

IN A,OP1

IN A,OP2

IN A,OP3

These four codes can be succinctly expressed by the following code:

IN A,P

where P represents one of the four possible inputs. Coding bits by using these
four mnemonics is quicker if we indicate bits p1 and p0 that control the mul-
tiplexer:

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0

IN A,P p1 p0 0 1 1 1 1 1

The same reasoning can be applied to addition: a good code to represent
addition is the word ADD. In our network, the only possible destination of
the result is the accumulator register (this goes for all the operations the ALU
carries out) so A will be the second part of the mnemonic code.

Given that there are 4 possible operands for this instruction as well, the last
part of the mnemonic code, after the comma, is P. So we get this mnemonic:

ADD A,P

represented by the binary code below:

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0

ADD A,P p1 p0 0 0 0 0 1 1
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Following the same reasoning, we’ll associate a code for each of the operations
the ALU carries out, giving us the following mnemonics. Please note that if
the operand coincides with the destination of the result, only the destination
is indicated.

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0 Description

IN A,P p1 p0 0 1 1 1 1 1 A ← P

ADD A,P p1 p0 0 0 0 0 1 1 A ← (A + P)

SUB A,P p1 p0 0 0 0 1 1 1 A ← (A - P)

AND A,P p1 p0 0 0 1 0 1 1 A ← (A and P)

OR A,P p1 p0 0 0 1 1 1 1 A ← (A or P)

NOT A 0 0 0 1 0 0 1 1 A ← NOT(A)

Also note that when the NOT A instruction is being executed the system
ignores the first two bits. For simplicity’s sake, we have decided to set it to
0, but any other value would have worked as well (this method will also be
adopted in the following).

What we have examined so far are not the only instructions that the network
can execute. Consider for example right shifting the contents of the accumu-
lator by placing a 0 to the left, indicated in the row of bits below:

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0

SRL A 0 0 0 0 0 0 0 1

The first 6 bits could take any value since the network ignores them while
carrying out the instruction.

This operation is very useful for dividing by two and can be denoted with the
initials SRL which indicate Shift Right Logic.

As for the shift instructions, the word “Logic” is usually used to indicate
inserting a zero on the left. The word “Arithmetic” however, is used in relation
to right shifting when the most significant bit itself (which represents the
sign) is inserted on the left7. The result of the shifting operation is done in
the accumulator and the only possible operand is contained there, so we have
chosen the mnemonic SRL A.

Similarly, we will use the mnemonic SLL A to denote the left shift instruction,
that will enter a ‘0’ on the right:

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0

SLL A 0 0 0 0 0 0 1 0

7 Since our circuit can only insert zeroes in the serial inputs (InR and InL) of the
universal register, arithmetic shifting operations will not appear here. In any case,
it is useful to understand this distinction.
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It is useful to formalize the operation that leaves the result in the accumu-
lator unaltered. Let’s call this operation NOP (“No Operation”). See the
corresponding configuration of bits below:

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0

NOP 0 0 0 0 0 0 0 0

Notice that the first 2 bits and those related to the ALU could take any other
value since they have no influence on the contents of register A.

Finally, we have already used the END bit to stop the execution. A variation
on the NOP is shown below, in which the network does nothing, but the
sequencer also stops; we’ll call it HALT.

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0

HALT 0 0 1 0 0 0 0 0

The following table sums up the mnemonic codes:

Mnemonic Code P1 P0 END F2 F1 F0 S1 S0 Description

IN A,P p1 p0 0 1 1 1 1 1 A ← P

ADD A,P p1 p0 0 0 0 0 1 1 A ← (A + P)

SUB A,P p1 p0 0 0 0 1 1 1 A ← (A - P)

AND A,P p1 p0 0 0 1 0 1 1 A ← (A and P)

OR A,P p1 p0 0 0 1 1 1 1 A ← (A or P)

NOT A 0 0 0 1 0 0 1 1 A ← NOT(A)

SRL A 0 0 0 0 0 0 0 1 A ← (A div 2)

SLL A 0 0 0 0 0 0 1 0 A ← (A per 2)

NOP 0 0 0 0 0 0 0 0 No Operation

HALT 0 0 1 0 0 0 0 0 Sequencer Halt

As an example, let’s look at the table below showing the algorithm (discussed
previously) that calculated the average of numbers, and juxtaposing its ma-
chine code with the mnemonic equivalent.

Clearly, the mnemonic code offers greater comprehension and readability.
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Mnemonic Code Machine Code

ADD A,OP0 0 0 0 0 0 0 1 1

ADD A,OP1 0 1 0 0 0 0 1 1

ADD A,OP2 1 0 0 0 0 0 1 1

ADD A,OP3 1 1 0 0 0 0 1 1

SRL A 0 0 0 0 0 0 0 1

SRL A 0 0 0 0 0 0 0 1

HALT 0 0 1 0 0 0 0 0

The full table of instructions with all the variants and the network schematic
are available in Appendix B.1 (the network is called Mp8A).

1.2.6 “Program”, “programming” and other important terms

We have seen that instructions in mnemonic code are useful to denote the basic
operations a machine is asked to carry out, in a reasonably readable format.
As of now, we will call the sequence of instructions describing a sequence of
operations (an algorithm) to execute, a “program”.

We will “program the system” in two phases: in phase one we write a text file
with a sequence of instructions in mnemonic code that describes the algorithm
that we want to obtain. In phase two, we translate the mnemonic code into
machine code to insert into the ROM. Taking into account its function, the
ROM is usually called Program Memory.

As mentioned above, phase one is supported by a text editor, while phase two
requires the use of a mnemonic code-machine code translator (or “compiler”)
(this type of application is called an “assembler”).

As we have seen before, the instruction address to be executed is generated
by the counter inside the network sequencer. As of now, that counter will be
called by its proper name, “Program Counter” (PC), in that it indexes the
individual program instructions, so that they are executed in order, one by
one. In technical literature, the term Program Counter is not the only way to
refer to this; the term “Instruction Pointer” (IP) is also in use.
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1.3 Sequencing, microinstructions and microprograms

In this section we will change the sequencer so that our processing system
will be able to execute more complex tasks. We will introduce new elements
such as the microinstructions, the microprogram memory and the instruction
pipeline.

1.3.1 A more compact sequencer

The network designed in Section 1.2 can be developed further. So far, it can
execute only about 10 instructions. It has yet to gain the ability to carry out
different sequences of instructions based on intermediate calculation results,
which is fundamental for any processing system. For example, in the control
system of a heating plant, if the sensor measures a temperature lower than
what is desired, a sequence must be carried out to turn the heater on, if the
temperature is already at the right level, no action is taken.

Furthermore, to make the processing network more versatile, we will add many
elements to the datapath. The network and the number of lines required to
control it will become more complex. With the current sequencing structure,
introducing a new line of control requires adding another bit to the machine
codes.

Please note that, when writing a program, we will use the same codes again
and again and as they grow in size, we will need much more program memory.
Given these necessary changes, it might be useful to rethink the system’s
current sequencing network (see the figure below) and add an instruction
coding system.
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In the figure above, we have separated the sequencer from the rest of the
network. Our first goal is to review its structure to be able to use the most
compact machine codes. In this current configuration, the Program Counter
(PC) addresses the Program Memory (PM). In a combinational way, the PM
returns the instruction code found at the address. The address the PC gener-
ates is incremented on the active edge of the clock CK if the enable signal of
the program counter (ENPC) has been activated.

In this structure, the instruction code is represented by the set of bits required
to directly control the elements of the datapath. As said before, if we keep
this setting and raise the elements in the datapath, the number of bits per
memory location raises correspondingly. We need to achieve code compaction
of the individual instruction codes by choosing the appropriate criteria.

The figure below shows a different instruction decoding network. As you can
see there is one more element added vis-a-vis the previous structure: a new
ROM memory at the bottom right-hand side.

In this new version, the machine code supplied by the PM is no longer defined
as the combination of control signals to activate in order to carry out instruc-
tions, but as an address that selects a location stored in the second ROM.
This is what contains the control signals to activate.

From now on, we’ll call the set of control signals related to a certain instruction
a “Microcode”, and the ROM containing it “Microcode Memory”, (MCM’).
The network designer will have previously memorized all the microcodes in
the MCM. The machine codes for the instructions themselves (those that the
programmer will insert in the PM) will actually be the microcode addresses.
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Obviously, the network designer needs to have documented all the available
instructions along with their codes for the programmer to use.

Since a memory location address doesn’t depend on the length of its content,
this new version will help us make the length of the machine code independent
of the number of control lines. In our example the MCM has 256 locations at
16-bits each. This means we can control up to 16 datapath control lines even
though we use only 8-bit instruction codes.

Notice that the MCM acts as an instruction decoder and so it could be re-
placed by a specially designed combinatorial network. The ROM memory-
based solution, however, is more practical since it allows us to express the
microcodes explicitly.

Lastly, a new control line (LDPC) has been added, and is connected to the
PC load command (LD). It will be used in Section 1.4 to load a new value
inside the PC, as a way to vary the order of instructions execution. For now,
however, it remains inactive.

1.3.2 The microprogrammed sequencer

The solution discussed here resolves the problem of compact instruction code
but still has a limitation. Some instructions will need multiple clock cycles to
complete, because of the component’s timing requirements. For example, the
instructions to modify the contents of a PC, as we will see in Section 1.4.

This is impossible in the current structure; just one control signal configura-
tion corresponds to each instruction code, and is generated over one single
clock cycle. We need to make it so they are generated sequentially so that
different signal configurations are presented to the network in successive clock
cycles.

To make this happen, we make a change that will allow us to carry out the in-
structions as if each one was a small program made up of multiple consecutive
microcodes.

To get a better distinction of what happens in the general context, let’s call
individual microcodes “microinstructions”and sets of microinstructions that
define the behavior of an instruction “microprograms”. We call this new struc-
ture a “microprogrammed sequencer”.

The change we need to make consists of adding another counter before the
previously introduced MCM. We get a structure where the instruction ma-
chine code taken from the PM is loaded in the new counter rather than to
address directly the MCM.

Let’s call this new element “Microprogram Counter” (MPC), and the ROM
previously added, that from now on will contain the microprograms “Micro-
program Memory” (MPM). See the following figure.
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In this new sequencer, the machine code no longer corresponds to an individual
microcode address but represents the address of the first microinstruction of
the microprogram to execute. After the MPC counter addresses the MPM’s
first microinstruction, it is incremented so that it targets the microprogram’s
next microinstructions. The upper part of the network, made up of the PC and
the PM supplies the instructions. The lower part (MPC and MPM) carries
out the corresponding microprograms.

A certain instruction’s microprogram is definitively formed in the design phase
and is never changed again unless there are later corrections to make or an
expansion to do.
We can control all the elements of a calculation network with MPM outputs
D15..D0. From a functional perspective, the MPM acts on the network in the
same way as the MCM seen previously.
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As visible in the lower part of the schematic, the MPC counter is forced to
always count forward unless the LDMC line forces it to load. When it is active,
the instruction code in the program memory output is loaded in the counter.

If we always ordered the MPC to load, we would simply get the same func-
tioning as the previous network. Once the instruction code is loaded, it is still
possible to deactivate LDMC and get the MPC counter to increment at each
successive rising edge of the clock.

As mentioned before, the instruction code in the program memory of this
new structure represents the address that the microprogram (corresponding
to the instruction itself) starts from. In the simplest cases, the microprogram
is made up of only one microinstruction.

The MPC and MPM together do a “sequential decoding” of the instruction
retrieved from the PM in that they make all the control signals necessary for
execution available in the order dictated by the microinstructions.

1.3.3 The microprogrammed sequencer and the computing
network

As we have seen, the functions of the new sequencer are controlled by lines
LDPC, ENPC and LDMC. We will make it so that the sequencer itself man-
ages them. Let’s connect the microprogram memory outputs so that the mi-
croinstructions themselves decide if and when to increment or load the PC,
load the instruction in the MPC or force it forward.

Let’s consider the calculation network examined in Section 1.2, and replace its
sequencer with a microprogrammed one. Here, we’ve divided the schematic
into two parts with a dotted red line to make it easier to read. The whole
schematic is shown in Appendix B.2.2 (the network is called Mp8B).

The next page shows the part with the datapath with some minor adaptations
on the connections to the new control lines. The page after next shows the part
with the microprogrammed sequencer where line LDMC has been connected
to bit D15 of the MPM and line ENPC to bit D14 so that the microcode can
directly force the PC forward (or not) by means of the ENPC, and/or load
or advance the MPC by means of the LDMC.

For now, we don’t need to reload the PC with a new value, which is why we’ve
eliminated line LDPC from the schematic making the counter load command
inactive (we will use this line next, in Section 1.4). Notice that there are control
lines that haven’t been used yet but they will be in the networks coming up
next.



1.3 Sequencing, microinstructions and microprograms 35



36 1 Introduction to programmable computing networks

1.3.4 How it works

As we have seen, once the instruction code supplied by the PM is loaded in the
MPC, it becomes the source address for reading the MPM. Therefore, in order
to set out a specific instruction, we only need to write the microinstructions
in that location and in the following ones. Each microinstruction must have
a tailored signal configuration.

In order to fully examine how sequencers work, let’s look at the Mp8B network.
The table below shows the control signals and their corresponding microcode
bit words.
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D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00

LDMC ENPC - - - - - - F2 F1 F0 S1 S0 P1 P0 -

Below is a summary of the control lines and the tasks they carry out:

LDMC ‘1’: MPC loading; ‘0’: MPC increment

ENPC ‘1’: PC increment

F2,F1,F0 ALU function select

S1,S0 Accumulator register function select

P1,P0 Input multiplexer channel select

The table below shows an example of instruction code (keep in mind that
the codes in the left hand column are only examples). We see microprograms
made up of one or more microinstructions.

Microprogram Memory

Instruction Code Address Microprogram

1Ah 1Ah 1st Microinstruction

1Bh 2nd Microinstruction

1Ch 1Ch 1st Microinstruction

1Dh 1Dh 1st Microinstruction

1Eh 2nd Microinstruction

1Fh 3rd Microinstruction

The examples above are illustrations of the topics discussed so far. We can
refer to instructions simply by indicating the address where the first micro-
program microinstruction is memorized.

This means that the instruction machine code (the microprogram address)
works as an identifier of the elementary operations that must be actually
executed. These operations can even be quite complex but they remain within
the logic of the sequencer itself and not directly visible to the programmer.

The microinstruction designer will have to manage the MPC load line LDMC,
which is generated by the microprogram memory. Line LDMC will have to be
activated at the last microinstruction of each microprogram so that the next
instruction is loaded in the MPC and the network is continually active.

Let’s examine the timing diagram in the figure below, where we see LDMC
is active between CK clock edges 2 and 3. The instruction retrieved from the
PM is loaded in the MPC at edge 3.

The PC was incremented beforehand so that it targets the current instruction.
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Since the instruction machine
code is nothing more than
the address supplied to the
MPM, this will output the cor-
responding control signals after
edge 3 and before edge 4 (re-
member that ROM memory is
a combinational network and it
produces outputs after a simple
delay).

As we have seen, microinstruc-
tions contain the combination
of control signals that need to
be active at a given time so
that the computing logic will
produce the desired results.

The results will be memorized
only at the next active edge of
the clock (4 in the figure), so if
it is made up of only one mi-
croinstruction, we can assume
that the instruction has been
executed on that edge.

For example, the result of an
addition produced by the ALU
is memorized in the accumula-
tor at this moment.

Let’s take the case of an in-
struction made up of multi-
ple microinstructions that will
take multiple clock cycles to
execute.

We need to make the address in the MPC advance progressively so that the
microprogram memory produces the next microinstructions one by one in
the output. To allow the MPC to advance at each clock cycle we only need
to make sure that it hasn’t been commanded to load (LDMC = ‘0’) in the
current microinstruction.

Briefly, the Fetch cycle happens at clock edge 2, the Decode cycle at edge 3
and the Execute cycle as of edge 4.



1.3 Sequencing, microinstructions and microprograms 39

This cyclical, continual succession of events is called an instruction cycle. See
the figure below.

1.3.5 Executing a sequence of instructions

Consider an instruction (A) and the following instruction (B). To ensure the
two instructions are executed one right after the other, B’s first microin-
struction must be executed in the clock cycle immediately following A’s last
microinstruction.

Considering the timed sequence of operations examined above, a preliminary
solution could be to activate ENPC (to force the next instruction to be taken)
in the second to the last instruction and activate LDMC in the last one.

Therefore, a standard microprogram as far as these two lines are concerned
will be in the format shown below. The other lines, which are insignificant for
this issue, are shown in a generic form here.

Generic Instruction

LDMC ENPC D13..D0

0 0 xxxxxxxxxxxxxx 1st Microinstruction

0 0 xxxxxxxxxxxxxx 2nd Microinstruction

0 0 ... ...

0 1 xxxxxxxxxxxxxx (N-1)th Microinstruction

1 0 xxxxxxxxxxxxxx Nth Microinstruction

This solution is not optimal because it requires the microprograms to have at
least two microinstructions. If we only needed one microinstruction to execute
a certain instruction, we would still have to add a second one so that command
LDMC could be activated. See below. This would waste memory and execution
time.

LDMC ENPC D13..D0

0 1 xxxxxxxxxxxxxx 1st Microinstruction

1 0 xxxxxxxxxxxxxx 2nd Microinstruction

Notice that this problem would disappear if the PC targeted the next instruc-
tion while the network executed the first. To achieve this we need to think
about activating ENPC differently. We will activate it not just one microin-
struction before as was done above, but a whole instruction before.

Since each instruction is followed by the next, we can activate ENPC in the
current instruction’s last microinstruction knowing that the PC won’t incre-
ment by the very next instruction, but by the one after it.
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In sum, for any instruction, we activate both LDMC and ENPC in the last
microinstruction as shown in the table below.

Generic Instruction

LDMC ENPC D13..D0

0 0 xxxxxxxxxxxxxx 1st Microinstruction

0 0 xxxxxxxxxxxxxx 2nd Microinstruction

0 0 ... ...

0 0 xxxxxxxxxxxxxx (N-1)th Microinstruction

1 1 xxxxxxxxxxxxxx Nth Microinstruction

On the next edge of the clock, activating LDMC makes the instruction avail-
able in the program memory load in the MPC, while activating ENPC incre-
ments the PC. However, this new value won’t be used until the next fetch
because the instruction loaded in the MPC now is the one that was taken
with the previous PC value.

1.3.6 Executing the first instruction during start up

We have just dealt with how to make instruction execution continuous, as-
suming the current instruction is already being executed. This section deals
with how to execute the first instruction in the program memory when the
system is reset.

When the MPC is reset, it targets microprogram memory location zero, so
the microinstruction in that location will be executed at the first rising edge
of the clock after reset.

Similarly, when the PC is reset it targets microprogram memory location zero,
so the instruction in that location is ready to be loaded in the MPC and then
decoded in the next instruction cycle.

The microinstruction in microprogram memory location zero should only or-
der the MPC to load the current instruction, at the same time enabling the
PC to increment and then prepare to execute the next instruction (control
bits D13..D0 are all set at zero).

Notice that whatever is set in microprogram memory location zero corre-
sponds to the NOP (No Operation) instruction. The following table shows its
microprogram.

Mnemonic Hex L
D

M
C

E
N

P
C

- - - - - - - - - S
1

S
0

P
1

P
0

-

NOP 00h 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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From the programmer’s point of view, this does nothing except increment the
PC. As it is located at MPM address zero, the instruction machine code NOP
is the address itself, 00h.

1.3.7 The “instruction pipeline”

This new way to manage the sequencer allows us to do the following things
simultaneously (in the same clock cycle):

1. fetch the next instruction
2. decode the instruction fetched in the previous cycle
3. execute the instruction decoded in the cycle before the previous one

In the literature, this mechanism is called the “instruction pipeline” and it
is now used in many microprocessors. Theoretically it makes it possible to
execute an instruction in one clock cycle (if the instructions are made up of
one microinstruction each). A thorough treatment of this subject is beyond
the scope of this book.

Here, we will simply point out that our sequencer allows for a three-stage
instruction pipeline (Fetch-Decode-Execute). The figure below shows the
pipeline executing a sequence of instructions8 made up of one microinstruction
each.

1.3.8 Defining microprograms

As we have mentioned, the network designer sets the microprogram memory
up with the microcodes for all the instructions that our network can execute.
The complete list of instructions for this network and their corresponding
microprograms can be found in Appendix B.2.1).

Remember that this is done only once in the design phase of the processor.
The programmer’s role is to set up the program memory with the sequence
of instructions that the algorithm may be required to carry out.

This separation of duties allows the system programmer to ignore the internal
workings of the processor and concentrate on the logic of the program.

8 The order of execution of the instructions is usually referred as the “control flow”.
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For practice, let’s attempt to build the microprograms of a few instructions
(even though this has already been done). For simplicity’s sake, let’s choose
instructions we already know because they were used in the programming
example of calculating the average of four operands (see Page 28, in Sec-
tion 1.2.5). We wrote:

ADD A,OP0

ADD A,OP1

ADD A,OP2

ADD A,OP3

SRL A

SRL A

HALT

Let’s examine the instructions used in the example one by one and define the
microprograms. We’ll assign a value to each control bit based on the operations
to carry out, like we did in Section 1.2.5 starting on Page 25.

For the ADD instruction, we need to set LDMC and ENPC to ‘1’ to activate
sequencing. Then let’s set all the unused bits to ‘0’. Let’s also set F2F1F0
to ‘000’ to force the arithmetic logic unit to perform the addition. The accu-
mulator register has to store the result so we set S1S0 to ‘11’. The operand
should be retrieved from the channel 0 of the multiplexer so let’s set P1P0 to
‘00’. Here is the result:

Mnemonic Hex L
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P
0

-

ADD A,OP0 04h 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

The designer loaded this microinstruction at microprogram memory location
04h so this is the instruction code the programmer will use.

Let’s build the microcode of the other three variations of ADD in a very similar
way. We’ll change only the multiplexer selection bits, as shown in the tables
below. These microinstructions were defined continuously in the microprogram
memory so the machine codes for ADD A,OP1 and the following ones are in
order as 05h, 06h and 07h.

Mnemonic Hex L
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ADD A,OP1 05h 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Mnemonic Hex L
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P
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-

ADD A,OP2 06h 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0
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Mnemonic Hex L
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ADD A,OP3 07h 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0

For the SRL A instruction, we, of course, set LDMC and ENPC to ‘1’, then
we set all the bits unrelated to the operation to ‘0’. However, we need to force
the register to right shift its contents so we set S1S0 = ‘01’. We get:
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SRL A 20h 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

This instruction machine code is 20h because this is the microprogram mem-
ory address where the designer loaded this microcode.

The HALT instruction, introduced in the previous chapter, stops the proces-
sor. For HALT, we load in the MPC a special variant of the NOP instruction
that does not increment the PC.

Starting from the NOP microcode, we force line ENPC to zero, and give
HALT the next microcode, placing it at address 01h, where the only enabled
line is LDMC and all other controls are at ‘0’:
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HALT 01h 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If the processor executes machine code 01h from HALT, we disable the raising
of the PC in the next clock cycle. In this clock cycle, the PC has been incre-
mented by 1 by the previous instruction’s microprogram. Now it targets the
next machine code. Since we cannot disable the loading of MPC, that next
machine code will be loaded regardless.

We can overcome this problem by inserting an identical code after the first
HALT code. This way, when the second HALT code is executed, it definitively
blocks the processor because that second code continues to load in the MPC
at every clock cycle. The PC doesn’t increment and only a system reset can
start execution again.

Since we need two consecutive 01h codes to stop our processor, we will make
things shorter by indicating one single HALT instruction that corresponds to
a pair of consecutive 01h codes.
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1.3.9 Rewriting the program of the average of four operands

The work we’ve just done for practice was actually the job of the microprogram
designer and was definitively finished in the network design phase. Here we
simply want to program the network to calculate the average of four values.

All we need to do to achieve this is consult the table of instructions (see
Appendix B.2.1), and insert into the program memory the codes that translate
our program into machine language, as shown below.

Mnemonic Code Machine Code

ADD A,OP0 04h

ADD A,OP1 05h

ADD A,OP2 06h

ADD A,OP3 07h

SRL A 20h

SRL A 20h

HALT 01h 01h

Let’s use a timing simulation session to trace the progress of this program’s
execution inside our network. The figure on the opposite page shows that the
PC targets program memory location 00h in the first clock cycle. This location
contains code 04h, the machine code for ADD A,OP0 (the Fetch cycle).

At the first cycle (as of edge 1), the pipeline starts, as described in sec-
tion 1.3.6. In the next cycle (as of edge 2), the instruction code is loaded
in the MPC and starts the Decode cycle. In this cycle microinstruction ADD
A,OP0 activates all the necessary signals, including those that order the ac-
cumulator to store a new value.

At clock edge 3 the result of the addition in the register is loaded (the Execute
phase). The arrows show the three cycles in succession.

Similarly, in all the following cycles, the instruction machine codes leave the
program memory (PM) one by one since the PC increments (ENPC=‘1’) for
each clock cycle.

Note that ENPC and LDMC are set at ‘1’ in all the microinstructions related
to the instructions we use, except for HALT where ENPC=‘0’.
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Finally, program memory location 06h contains the first of the two identical
HALT instruction codes. The PC is incremented once again on edge 8 of the
clock by the microinstruction of the last SRL A instruction, which is now in
the decode cycle.

After edge 8, the first of the two HALT instruction codes is in the decode
cycle. ENPC is set at ‘0’, so the PC will not increment at the next edge.
LDMC at ‘1’ orders the next machine code (the second HALT code) to load
in the MPC. As of now, none of the control signals change and the processor
stops.

In conclusion, notice that the last calculation instruction (the second SRL A)
is executed on edge 8, right when the second HALT code is retrieved. And it
is then that you can see the final result of the average of the 4 values in the
accumulator.
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1.4 Jumps, loops and decisions

In this section, we are going to expand the capabilities of our system. Some
modifications to the microprogrammed sequencer make it possible to: a) exe-
cute instructions that allow for changing the program execution sequence (or
“control flow”), b) execute the same sequence of instructions multiple times,
and c) make decisions on the tasks to carry out.

1.4.1 Loops and jump instructions

Our network is not yet able to repeat the same sequence of instructions mul-
tiple times. Also, as we alluded to in the previous chapter, it does not have
the tools yet to choose which of the available sequences to execute based on
intermediate computing results9.

These two capabilities are at the basis of modern computing systems. The
aim of this chapter is to change our network so that it can:

— cyclically carry a sequence of instructions.
— decide which sequence of instructions to execute based on intermediate

computing results.

Underpinning these new actions is the need to vary the control flow of the
program by interrupting one sequence and beginning another.

The first change we will make is to add the ability for our network to repeat
a sequence of instructions. Remember that so far we have only been able to
execute a single sequence that ended only by stopping the processor.

Consider introducing an instruction that can change the current flow of ex-
ecution and make it restart from any other instruction. This would make it
possible to write a sequence of instructions only once and to cyclically repeat
its execution infinitely.

We have seen that the PC addresses the next instruction to be executed. By
varying the PC’s contents, we can change the program’s flow of execution and
make it restart from another instruction. In computer jargon, changing the
flow of execution is referred to as jumping to a new sequence of instructions.

The following figure uses arrows to identify the changes as A, B, C and D.
We introduce a connection (arrow ‘A’ in the figure) between the PM and the
pre-load input of the PC.

9 In other words, the networks examined so far are not able to execute operations
like the classic if - then - else construct, or loops that result from the for, or while
- do constructs that are common in programming language.
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With this new change, the output of the PM is now connected not only with
the MPC but also with the PC, forming a sort of feedback. We can change
the content of the PC by retrieving from the PM itself the address we want
to jump to and loading it in the PC.

The PC’s pre-load command (arrow ‘B’) is now connected to line D13, an
MPM output (arrow ‘C’). This control line was introduced in the previous
chapter with the name LDPC but it was not used (arrow ‘D’).

The microinstruction designer can now order the PC to be loaded. As seen
above, the value to load comes from the PM. We want to write the address
to jump to in the location immediately after the one containing the jump
instruction.
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To execute the jump, we need to activate LDPC, at the appropriate time, to
command the loading of the address in the PC.

Let’s give a new mnemonic code JP (Jump) to represent the new instruction.
Its operand is the address we want to jump to. The format is as follows:

JP <address>

The microprogram related to this can be found in the table below. The first
microinstruction commands the instruction address that we want to jump
to, which is already in the PM output thanks to the pipeline, to load in the
PC (LDPC = ‘1’). The second commands the instruction we have jumped to
load in the MPC (LDMC = ‘1’) and the PC to increment so that the next
instruction can be retrieved (ENPC = ‘1’), so that the pipeline can restart.
All the other control signals are kept inactive.

LDMC ENPC LDPC D12..D0

0 0 1 0000000000000 1st Microinstruction

1 1 0 0000000000000 2nd Microinstruction

The instruction requires two clock cycles to execute: one to retrieve the in-
struction we want to jump to from the memory and another to execute that
instruction, i.e. to complete the jump.

Below we see an example: our program creates an “infinite loop” where the
sequence made up of the second and third instructions is cyclically repeated
indefinitely:

Mnemonic Code Address Machine Code

IN A,OP0 00h 1Ch

LOOP: ADD A,OP1 01h 05h

JP LOOP 02h 22h 01h

The first instruction loads the value of input OP0 in the accumulator register.
The second instruction is to add operand OP1 to it. A label followed by a
colon has been placed in front of the mnemonic code for the instruction.

This helps identify an instruction, or a sequence that begins with that in-
struction. This label allows us to write the jump instruction more legibly and
in a more versatile way on the row below. In full, the JP LOOP instruction
reads like a command: “jump to the instruction with the label LOOP”. The
assembler will replace the argument of JP with the address of the instruction
labeled as LOOP, that is 01h.

As the table shows, the mnemonics correspond to machine codes 1Ch, 05h,
22h and 01h. 01h is the address to jump to and corresponds to the label
LOOP. It is placed at address 03h, immediately after the code of JP (22h).

The following timing diagram shows the sequence of the operations (where we
have set OP0 = 06h and OP1 = 09h).
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The red arrows highlight the transfer of the address we want to jump to from
the program memory to the PC. Because of that transfer, the pipeline stops
for one cycle. This happens at clock positive edges 5 and 8, where LDPC is
high. The figure also shows the Fetch, Decode and Execute cycles for all the
instructions.

The program memory output shows jump instruction code 22h between edges
3 and 4. On edge 4, that code is loaded in the MPC so it enters the Decode
cycle. Between edges 4 and 5, the first jump microinstruction orders the PC
to load the contents of the program memory output (i.e. the address to jump
to, 01h in this case). It also orders the MPC to increment in order to execute
the second microinstruction in the next clock cycle.

On edge 5, the PC loads the new address 01h, and so between fronts 5 and 6
we can read the instruction code found at the new address, ADD A,OP1, from
the program memory. Meanwhile on the same clock cycle, the second microin-
struction orders the new instruction to load in the MPC and so everything
proceeds as normal. The jump has been executed.

1.4.2 Decisions and conditional jump instructions

We have seen that the jump instruction allows us to change the order of
execution of the instructions set in memory as well as to define infinite loops.
Now we want to introduce a similar jump instruction that will allow the
network to make decisions based on the results of a previous calculation.

It will allow for example to define counter-based loops (that is sequences of
instructions to execute a certain number of times) or loops that are repeated
until a certain condition is reached.

In the previous example of the infinite loop, we continually incremented the
accumulator with no concern for its content. Now we are going to load a
number (taken from an input) in the accumulator and decrement it at each
repetition of the loop. This time, however, we want to stop when the register
content reaches zero, reload the initial number and repeat the process. The
graph below shows the number in the accumulator and its progress over time.
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The program in mnemonic code looks like this:

START: IN A,OP0

LOOP: SUB A,OP1

JP NZ, LOOP

JP START

We added a label at the beginning so that the last instruction (JP START)
makes everything repeat from the top, creating an infinite cycle. ADD was
replaced by SUB, which subtracts the OP1 input operand (set to 1) from the
accumulator, and re-saves the result in the accumulator itself.

What is new is the JP NZ,LOOP instruction, which we call a “conditional
jump”, in that the jump operation depends on a condition, the one written
just before the LOOP label. In this case, the condition concerns the fact that
the last calculation produced a non-zero result (NZ = “Not Zero”) at the ALU
output.

In natural language, we can express the meaning of this instruction thus:
“Jump to the instruction labeled as LOOP if the result of the last calculation
is not zero”.

In our example, we have defined two “nested” loops (one inside the other).
The outer one is labeled as START and repeats everything from the top.
The inner one re-executes the calculation only if the result of the operation is
non-zero. At some point, the result reaches zero. Following this condition, we
don’t want the jump to be executed, but rather the very next instruction in
the program.

1.4.3 The FLAG register

There is a problem with the implementation of our network. As we saw in the
previous chapter, the ALU generates outputs ZF and CO. ZF signals if the
result of the operation being executed is zero (this activates ZF). The CO,
however, activates whenever the circuit generates a carry (or a borrow).

The issue is that these signals no longer refer to the last logical-arithmetic
operation executed when the conditional jump instruction is being decoded.
Therefore, they must be memorized the moment they are produced, i.e. in the
clock cycle when the ALU executes the operation.

To memorize their value, we can introduce two flip-flops. This way we can use
the flags’ values to affect the execution of the following instructions.

As we see in the figure below, the ALU signal outputs are connected to two
E-PET flip-flops. The enable inputs (E) of the flip-flops are connected to-
gether and connected to the new EFLG line, coming from bit D10 of the
microprogram memory.
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The microcode will enable the memorization (or lack thereof) of the flags. It
will also allow for the memorization during the correct clock cycle and only
for those operations that require it (arithmetic and logical operations).

In the most complex systems there can be a greater variety of flags. The set
of flip-flops that memorize the ALU signals is normally bundled in a register
called the “Flag Register”.

In sum, the addition of the flag register allows us to keep their values even
once the operation that generated them is finished.

1.4.4 Controlling jump conditions

Let’s review our network schematic. The load enable of the PC was connected
(with the name of LDPC) to microcode line D13. Remember that the ac-
tivation of LDPC causes the loading of the jump address, coming from the
program memory, into the PC.

Now we need to generate the LDPC line in function of the type of jump
requested. It has to be imposed by the microcode in function of the values
of the flags. We will use not only microcode line D13 but also lines D12 and
D11. For our purposes, they have been renamed J2, J1 and J0, respectively.

The table below shows all the possible types of jumps. For the moment, some
combinations are not being used as they are reserved for possible future ex-
pansions.
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J2 J1 J0 Selected Operation

0 0 0 No Jump

0 0 1 Unconditional Jump

0 1 0 Not Used

0 1 1 Not Used

1 0 0 Jump if ZF = ‘1’

1 0 1 Jump if ZF = ‘0’

1 1 0 Jump if CO = ‘1’

1 1 1 Jump if CO = ‘0’

As you can see in the table, according to the combination of J2, J1 and J0,
we can choose whether to jump, not jump or condition the jump on the value
of a flag.

So, let’s add a network based on a multiplexer that can carry out the functions
defined by this table. The complete schematic of the network can be found in
Appendix B.3.2 under the name Mp8C.

If the combination requested by J2J1J0 is ‘000’, the multiplexer forces LDPC
to ‘0’ (this is the case for all the other non-jump instructions). To get an
unconditional jump, the J2J1J0 lines have to be set to ‘001’. This is the same
as activating LDPC in any case, regardless of the value of the flags.

In the other four cases, LDPC is directly connected to the flag requested
(direct or negated) so there will be a jump only if the flag requests it. For
example if we make J2J1J0 = ‘101’, the LDPC will equal the negated ZF,
as in the case of instruction “JP NZ, LOOP” at the start of this section. We
get a jump if ZF is inactive, that is if the result of the previous operation is
non-zero.

Now let’s look at the carry flag, CO. If we make J2J1J0 = ‘110’, the load
command for the PC will be active only if the flag is. The mnemonic code
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is “JP C,LOOP”. The jump will be executed if the previous calculation has
generated a carry.

The mnemonic codes for any jump instructions that are possible in our system
are shown in the following table. We can denote the address both in numerical
and in symbol form, by using a label as in the examples below. (It is the
assembler’s job to replace the labels with the real addresses).

Mnemonic Code Operation

JP <address> Unconditional Jump

JP Z,<address> Jump if Zero

JP NZ,<address> Jump if Not Zero

JP C,<address> Jump if Carry

JP NC,<address> Jump if Not Carry

The microprogram for the unconditional jump instruction is as follows:
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JP <address> 22h 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the first microinstruction, lines J2J1J0 = ‘001’ order the PC to be loaded
with the instruction to jump to. In the second, LDMC orders the MPC to
load the instruction we are jumping to, while the ENPC forces the PC to be
incremented to retrieve the next instruction. The other control signals are not
needed so they are left inactive.

The table below shows the conditional jump instructions and their micropro-
grams.
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JP Z,<address> 24h 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JP NZ,<address> 26h 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JP C,<address> 28h 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JP NC,<address> 2Ah 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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In the first microinstruction, bits J2, J1 and J0 indicate the flag to use to
condition the jump. Meanwhile, ENPC = ‘1’ enables incrementing the PC by
one, which will happen if the jump condition is not reached.

The second microinstruction orders the MPC to be loaded and the PC to be
incremented so it always stays one instruction ahead (for the pipeline to work).
All the other datapath controls are kept inactive in both microinstructions.

If the flag has permitted the jump, the instruction we’ve jumped to will be
loaded in the MPC register. Otherwise, if the flag has not permitted the jump,
the instruction that follows the conditional jump will be loaded.

To thoroughly understand the logic of the conditional jump mechanism we
must focus on the state of the sequencer. In the same clock cycle where the first
microinstruction is executed, the program memory output supplies the address
where we want to jump. Since we cannot know at that moment whether the
jump will be executed or not, we must consider both possibilities. Let’s look
at the following test program:

Mnemonic Code Address Machine Code

IN A,OP0 00h 1Ch

LOOP: SUB A,OP1 01h 09h

JP NZ, LOOP 02h 26h 01h

NEXT: NOP 04h 00h

NOP 05h 00h

... 06h ...

Suppose that we read number 2 from input OP0 while OP1 is set at 1. When
the first SUB is executed, the value of the accumulator goes from 2 to 1. The
result is “non zero”, so the jump is executed and goes to LOOP.

Let’s use the timing diagram of the signals used here to analyze what happens
in the sequencer. See the figure on the next page.

We see that machine code 26h from JP NZ,LOOP is retrieved from the pro-
gram memory during the clock cycle between edges 3 and 4. In the next cycle,
(between edges 4 and 5) the instruction is decoded.

The logic takes into account that ZF is ‘0’, and consequently the load com-
mand for LDPC is activated (to jump) and ENPC is also activated (to retrieve
the next instruction).

The PC ignores the ENPC enable because the load command for LDPC has
priority over the enable due to the way the counter functions. The jump
address (on edge 5) is available on the program memory output and is loaded
in the PC.
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In the cycle between edges 5 and 6 the instruction machine code of where
we jumped to is read in the program memory. Therefore, this is the next
instruction to be decoded.

When SUB is executed for the second time, the accumulator is reset to zero (on
edge 7). ZF=‘0’ means that the jump isn’t executed and LDPC isn’t activated.
Even so, the ENPC is active, so the PC is incremented on edge 8. Then the
instruction immediately after the jump is retrieved (here, it’s NOP) and the
order set out by the pipeline (fetch, decode and execute) recommences.

1.4.5 Example: How to use conditional jumps

In the previous example, we first loaded a number in the accumulator and
decremented it until it reached zero and started the process again. Now we
want to change the numerical sequence that is generated following the trian-
gular trend in the figure.

The program in mnemonic code looks like this:

IN A,OP0

LDOWN: SUB A,OP1

JP NZ, LDOWN

LUP: ADD A,OP1

CP A,OP0

JP NZ, LUP

JP LDOWN

The first three instructions are the same as in the previous example, except
that the label is now called LDOWN (abbreviation of Loop Down). The first
instruction takes the number we’ll start with from input OP0 and puts it in
the accumulator register.

The next two instructions bring about the progressive reduction of the content
of the register until it reaches zero (we set input OP1 to 1). When the register
goes to zero, instruction JP NZ,LDOWN stops jumping and we move to the
next instruction.
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At the LUP (Loop Up) label, we find the ADD instruction, which adds the
constant read from input OP1 to the accumulator, which is set to 1. We want
to repeat this increment until conditional jump JP NZ,LUP gets us to the
initial value again. Then we will restart by using JP LDOWN to jump to the
second instruction, to decrement the accumulator again.

Nonetheless, the flag mechanism can’t help us directly because neither of
the two available flags activate when we reach the value OP0 (the value is not
zero nor has the increment produced a carry). Do we have to add a magnitude
comparator to the ALU? As we can see in the mnemonic code, we have inserted
a CP instruction (“Compare”) which is meant to compare the accumulator
with the OP0 input.

To achieve the same result previously, we subtracted (SUB) one operand from
the other and discussed how to observe the flags to evaluate if the two operands
were equal or if one was larger than the other (see Section 1.2.4.1, on Page 25).
Now, we save the flags for a later use, so a subtraction operation seems the
perfect choice to do an evaluation through conditional jumps.

If the two operands are different, the result of the subtraction will be non-
zero so instruction JP NZ,LUP will continue to jump backwards to instruction
ADD, labeled as LUP. Nevertheless, our case requires the accumulator to keep
its content after the compare, as every time the cycle repeats we increment it
by one. Unfortunately, a SUB changes the content of the accumulator at the
moment it saves the result of the subtraction.

We can solve this problem by introducing the compare instruction CP, which
works like a SUB instruction but updates only the flags based on the result.
The CP instruction doesn’t save the result of the subtraction in the accumu-
lator so its content remains intact.

Let’s compare the SUB, ADD and CP microprograms.
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ADD A,OP0 04h 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0
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SUB A,OP0 08h 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0
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CP A,OP0 30h 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
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As we can see, all the microprograms of ADD, SUB and CP activate the line
EFLG (as well as all the other arithmetic and logical instructions defined for
this network), which orders the memorization of the flags. ADD and SUB
order the register to store the result from the ALU (setting S1S0 = ‘11’),
while CP calculates the result but doesn’t save it (S1S0 = ‘00’).

Appendix B.3.1 has the complete list of instructions and the microprograms
related to the network we have developed so far (Mp8C), as well as the com-
plete schematic.

By consulting this list, we can translate the proposed program into machine
code and get the following:

Mnemonic Code Address Machine Code

IN A,OP0 00h 1Ch

LDOWN: SUB A,OP1 01h 09h

JP NZ, LDOWN 02h 26h 01h

LUP: ADD A,OP1 04h 05h

CP A,OP0 05h 30h

JP NZ, LUP 06h 26h 04h

JP LDOWN 08h 22h 01h
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1.5 Input and output ports

This section introduces the base concepts surrounding connecting the proces-
sor to external devices through the use of input and output ports. 10

1.5.1 Input ports

An input port means a connection between the processing system and the
outside, which allows it to receive data to process. We have encountered input
ports since the beginning of this book and we have used them in examples to
get the values of the operands to use in our calculations. We have also used
them to acquire constants, due to the lack of other methods available.

Let’s review the structure we used before in the following figure. A multiplexer
allows us to choose which port we wish to read from, within the limits imposed
by bits P1 and P0. This kind of port is called “parallel” since it allows us to
read a whole group of bits (8 in our case) in one single operation.

We have seen that the information selected can be copied in the accumulator
by following the paths allowed within the network. To do this we can use the
instruction IN A, <port>, which is translated to microcode terms in the line
P1 and P0 settings.

10 Port in the maritime sense of the term. A port where ships dock to load and
unload cargo is a metaphor for data that enter and results that exit.
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1.5.2 Output ports

In the examples from the previous section, we’ve always retrieved results by
reading the accumulator for simplicity’s sake. In a real processor, however, the
accumulator is not visible from the outside. The internal part of the calculation
is always markedly separated from the part that produces the results.

Therefore, it is necessary to introduce something that will make it possible to
communicate with the outside. This is what output ports are for; they make
the results available to the outside through the use of parallel registers. One
benefit is that they make it possible to keep the results permanently legible
while the whole network continues processing other data.

The two parallel output ports that we added to our system are made up of reg-
isters that are synchronized by the clock and controlled by the microprogram
memory like all the other elements of the datapath. See the figure below.

We see lines EO0 and EO1 (in order, microcode bits D08 and D09), that
enable ports PORT0 and PORT1, respectively, to load data in the registers.
The register input is connected to the ALU.

So, the ALU allows the microcode to request to load in either of these two
registers regardless of the number produced or transferred. In our processor,
we will restrict ourselves to copy only the content of the accumulator to these
ports. The complete network schematic, including the output ports is available
in Appendix B.4.2 under the name Mp8D.

To manage the output ports, we add a new instruction:

OUT <port>,A

Where <port> identifies the output port chosen by the programmer. This
instruction loads the accumulator content onto the selected port by passing
it through the ALU.
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These two instructions’ microprograms are made up of only one microinstruc-
tion each, where the new control lines EO0 and EO1 appear. The ALU is set
up to copy input A (F2F1F0=‘110’) to the output.
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OUT PORT0,A 34h 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0
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OUT PORT1,A 35h 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

The value copied to the selected output port will remain there until a new
OUT instruction is performed on it.

In Appendix B.4.1 you will find the list of instructions and the microprograms
related to the network we have developed so far.

1.5.3 How to use ports

Below is a basic example:

LOOP: IN A,OP0

OUT PORT0,A

JP LOOP

where the number in input port OP0 is first copied in the accumulator and
then in turn is copied in output port PORT0 without being processed. The
unconditioned jump instruction JP LOOP means that this pair of instructions
is repeated infinitely. Once it is translated into machine language, we have:

Mnemonic Code Address Machine Code

LOOP: IN A,OP0 00h 1Ch

OUT PORT0,A 01h 34h

JP LOOP 02h 22h 00h

1.5.3.1 Generating a periodic triangular waveform

Let’s return to an example we studied in the previous section, where a se-
quence of increasing/decreasing binary numbers was generated in the accu-
mulator and repeated infinitely. As you can see in the following figure, the
plot of this sequence of values over the time recalls a triangular waveform.



64 1 Introduction to programmable computing networks

In this new version of the program we want to use port PORT1 to generate
the values. Remember what we discussed before, that the accumulator in a
real system is never directly accessible from the outside.

Therefore, if we want to generate a number sequence, we must copy them,
value by value to an output port. The listing below shows the program’s
mnemonic code rewritten with the OUT instructions added where the content
of the accumulator is changed.

IN A,OP0

OUT PORT1,A

LDOWN: SUB A,OP1

OUT PORT1,A

JP NZ, LDOWN

LUP: ADD A,OP1

OUT PORT1,A

CP A,OP0

JP NZ, LUP

JP LDOWN

The first two instructions initialize the content of the accumulator with the
starting value (read from port OP0) and then copy it to port PORT1. This is
followed by a loop that decrements the accumulator at every repetition. This
is achieved by subtracting from it the number read in port OP1 (set at 1).

At each decrement the new value is calculated and copied to the output port.
The loop ends only when the accumulator reaches zero. At this point, instruc-
tion JP NZ, LDOWN stops jumping to the LDOWN row, so the execution
continues with the next instruction.

On this row of the program we find a loop with a similar structure to the
previous one. Every time this repeats, we increment the accumulator and
update the output port with the new value.

In this case, however, the loop’s end condition is not the accumulator reaching
zero but comparing (with instruction CP) the value of the accumulator with
the final number of the count (which has to be the same as the starting number
and is read again at the OP0 port). When they are equal, the loop is finished
and we move on to the instruction in the position after JP NZ, LUP, that
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is the unconditioned jump JP LDOWN. The program goes back and repeats
the sequence of the two loops infinitely.

After the translation of the mnemonic code we get the following machine code.
Now, we can use the simulator to test the functionality of the program.

Mnemonic Code Address Machine Code

IN A,OP0 00h 1Ch

OUT PORT1,A 01h 35h

LDOWN: SUB A,OP1 02h 09h

OUT PORT1,A 03h 35h

JP NZ, LDOWN 04h 26h 02h

LUP: ADD A,OP1 06h 05h

OUT PORT1,A 07h 35h

CP A,OP0 08h 30h

JP NZ, LUP 09h 26h 06h

JP LDOWN 0Bh 22h 02h

1.5.3.2 Generating a periodic trapezoidal waveform

This example shows us another use of loops: generating a delay. As in the
previous case, we want to generate a periodic sequence of values, but here the
arrangement will look trapezoidal. See below.

As you can see, there is a pause between the rising part and the descending
part, where we keep the last value that was generated for a duration propor-
tional to the value read at input port OP3.

Also, notice that the sequence that was generated stays between two values,
which are read at input ports OP1 and OP2. The following list shows a sample
program that generates this sequence.

We see four loops one after the other, closed in a single external loop that
repeats the whole sequence infinitely. Unlike the previous example, here both
loops that increment the value (LOOPUP) and decrement it (LOOPDN) use
the CP instruction to evaluate the loop end condition.
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START: IN A,OP1

OUT PORT1,A

LOOPUP: ADD A,OP0

OUT PORT1,A

CP A,OP2

JP NZ, LOOPUP

IN A,OP3

PAUSEHI: SUB A,OP0

JP NZ, PAUSEHI

IN A,OP2

LOOPDN: SUB A,OP0

OUT PORT1,A

CP A,OP1

JP NZ, LOOPDN

IN A,OP3

PAUSELO: SUB A,OP0

JP NZ, PAUSELO

JP START

The pauses, obtained by a delay loop, are inserted between the two loops. We
will explore the delay loop concept in detail further on. For now, let’s look in
our example at the loop that repeats from label PAUSEHI.

Instruction IN A,OP3 loads the value of OP3 in the accumulator before enter-
ing the first loop. Each time the loop repeats, the content of the accumulator
lowers by one until it reaches zero. It is easy to verify that the two instructions
that repeat are executed in 3 clock cycles. The loop is repeated OP3 times so
its execution time is proportional to this number (3 x OP3).

Note that after this delay loop is executed, the accumulator’s previous content
is lost. This means when we move forward, we must reload the values from
the input ports to resume output generation. After the assembler translates
the program, we get the following machine codes:

Mnemonic Code Address Machine Code

START: IN A,OP1 00h 1Dh

OUT PORT1,A 01h 35h

LOOPUP: ADD A,OP0 02h 04h

OUT PORT1,A 03h 35h

CP A,OP2 04h 32h

JP NZ, LOOPUP 05h 26h 02h

IN A,OP3 07h 1Fh

PAUSEHI: SUB A,OP0 08h 08h

JP NZ, PAUSEHI 09h 26h 08h

(cont.)
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IN A,OP2 0Bh 1Eh

LOOPDN: SUB A,OP0 0Ch 08h

OUT PORT1,A 0Dh 35h

CP A,OP1 0Eh 31h

JP NZ, LOOPDN 0Fh 26h 0Ch

IN A,OP3 11h 1Fh

PAUSELO: SUB A,OP0 12h 08h

JP NZ, PAUSELO 13h 26h 12h

JP START 15h 22h 00h

1.5.3.3 Generating signals with the PWM technique

“Pulse Width Modulation” (PWM) is a very common technique used to gener-
ate a definable medium voltage on a line. A succession of fixed period, variable
length pulses is generated on the line. The average voltage generated depends
on the ratio between the duration of the high level and the period.

In this example, we use our system to generate two PWM signals, whose
average values are proportionate to the number set in the input.

A PWM signal is retrieved from the bit in position 0 of port PORT0, and its
average value is proportionate to the value read on input port OP1. The other
PWM signal is generated on bit 0 of PORT1 and depends on input OP2.

The figure below shows the operating principle. The program cyclically incre-
ments the number in the accumulator from zero to the maximum representable
value (255) generating a sort of staircase.
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At the start of the staircase, bit 0 in both ports is set to ‘1’. At each increment,
the program compares the new number with the one set on the corresponding
input. When they are equal, bit 0 in the corresponding port goes to zero. As a
result, we get a 2-level pulse signal on bit 0 in both ports. Its duration is pro-
portional to the number set on the corresponding input (as per specifications).

The following listing shows the mnemonic code for the program of the PWM
generator. Remember that ports OP0 and OP3 are used to keep constants 0
and 1 available, respectively.

The program’s main loop begins and repeats on the first instruction, labeled as
START. At the beginning of the sequence, bit 0 of ports PORT0 and PORT1
are both brought high, while the accumulator is brought to zero.

At the LOOP line, the value in the accumulator is incremented. At lines
TEST1, TEST2 and TEST3 that value is compared to OP1, OP2 and zero,
respectively11.

If the first compare produces a positive result, bit 0 of PORT0 is set to zero.
Similarly, bit 0 of PORT1 is set to zero if the second compare requires it,
while the last compare checks if the accumulator count has returned to zero.
If it has, we start again from the top and bring bit 0 of both ports high again.

START: IN A,OP3

OUT PORT0,A

OUT PORT1,A

IN A,OP0

LOOP: ADD A,OP3

TEST1: CP A,OP1

JP NZ, TEST2

IN A,OP0

OUT PORT0,A

IN A,OP1

TEST2: CP A,OP2

JP NZ, TEST3

IN A,OP0

OUT PORT1,A

IN A,OP2

TEST3: CP A,OP0

JP NZ, LOOP

JP START

11 Note how similar this evaluation sequence is to the switch-case-case construct
found in many programming languages.
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The limitations of this architecture based on one only register, the accumula-
tor, make it so that on every positive compare we need to clear the accumulator
just to write zero in the output ports.

If no corrections are made, this operation loses the memory of the number
we are at on the staircase. Luckily, all we need to do in our case is this:
take the value (that the compare found equal to the number that was in the
accumulator) from the corresponding input port and reload it.

Finally we assemble the program and get the machine codes as follows:

Mnemonic Code Address Machine Code

START: IN A,OP3 00h 1Fh

OUT PORT0,A 01h 34h

OUT PORT1,A 02h 35h

IN A,OP0 03h 1Ch

LOOP: ADD A,OP3 04h 07h

TEST1: CP A,OP1 05h 31h

JP NZ, TEST2 06h 26h 0Bh

IN A,OP0 08h 1Ch

OUT PORT0,A 09h 34h

IN A,OP1 0Ah 1Dh

TEST2: CP A,OP2 0Bh 32h

JP NZ, TEST3 0Ch 26h 11h

IN A,OP0 0Eh 1Ch

OUT PORT1,A 0Fh 35h

IN A,OP2 10h 1Eh

TEST3: CP A,OP0 11h 30h

JP NZ, LOOP 12h 26h 04h

JP START 14h 22h 00h
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1.6 Constants, variables and read/write memory

In this section, we’ll complete the design of our processor for educational
purposes by adding support for managing constants and a small RAM memory
bank for managing variables.

1.6.1 Constants

The term “constant” means a number or value that a program uses for its
calculations, which is defined when the program is written and remains un-
changeable during the program’s execution. We have already used constants
in previous sections. We retrieved them from input ports since we had no
other means to provide these values to our programs.

The use of ports for this purpose is quite limited. This is because we would
like to use ports to acquire numbers from the outside to process and because
quite often we need very many constants.

It would be useful to memorize the constants inside the program itself and
be able to load them in the accumulator. To do that, we will add a new
instruction:

LD A,<const>

where LD is the abbreviation for Load, and operand <const> is a generic
8-bit constant to copy in the accumulator. For example, to load constant 01h
in the register, we write:

LD A,01h

But where should we memorize this constant? As we did for jump instructions
(see the figure below), it is convenient to put the instruction operand in the
memory location immediately after that of its machine code. This way, we
take advantage of the opportunity to increment the PC to target the constant
following the instruction.
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With the jump instructions, we added a connection between the program
memory output and the pre-load inputs of the PC. The green arrow shows
the path of the jump address.

With constants, we need to bring the program memory output toward the ac-
cumulator, but we cannot do that directly since the accumulator is connected
to the ALU output.

The first solution that comes to mind is to add a multiplexer to choose where
to retrieve the value to load in the accumulator. This is shown in the figure
below where the arrows highlight the two paths.

Under the control of the Select Line, we can choose to direct the ALU output
(as before) or the program memory output toward the accumulator. Clearly,
the selection line should originate with the microcode so that the microin-
structions can control it.

This simple choice from the point of view of the paths is incompatible with
what we are adding to our processor in this section. It would force us to add
a bit to the microcode but the only line available (D0) will soon be used for
other things.

Adding other bits would require a larger microprogram memory. Although this
is technically feasible, let’s remember the educational scope of the network we
are building. We want to limit the network complexity.

This means we should compromise and eliminate something to make space
for the new connection. Let’s take advantage of the processor’s existing data
paths and sacrifice an input port (OP3). This isn’t ideal but if we consider
that we have always used at least one port to read a constant in the previous
examples, this is not an unreasonable sacrifice, seeing that, in its place, we
could put many constants in the program memory.
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The following figure shows there is no OP3 port. Instead, the program memory
input has been connected to the multiplexer input. The arrows show the path
that the constant follows before being loaded in the accumulator.

Below, we see the microprogram of the LD A,<const> instruction, which
is made up of two microinstructions. The first was placed at microprogram
memory address 3Dh so, as we have learned, this number is the instruction
machine code.
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LD A,<const> 3Dh 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In order to activate this path, F2F1F0 should be set at ‘111’ in the first
microinstruction so that operand B is copied at the ALU output. Also, P1P0
should be at ‘11’ to select multiplexer channel 3. Finally, we should force the
number in the register to load with S1S0 = ‘11’.

When these signals are active the PC is targeting the machine code’s next
location, which contains the constant that will be loaded in the accumulator
(on the very next rising edge of the clock). LDMC is set at ‘0’, so that the
second microinstruction can be read. ENPC = ‘1’ so that the PC is brought
forward to retrieve the next instruction in the next clock cycle.

The second microinstruction forces the PC to load in the MPC, bringing it
forward to target the next instruction.
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1.6.2 Immediate addressing instructions

The term “addressing” refers to the mode used to retrieve data to process.
This category of instruction uses “immediate” addressing to retrieve a number
found immediately after the instruction machine code.

Once we have changed the connection to multiplexer input I3, we are forced
to review all the instructions that use that input. So far, none of these instruc-
tions involves reading a constant from the memory program. For example, if
we tried to execute ADD A,OP3 now, it would add the contents of A with
the machine code of the next instruction in the program memory. This does
not interest us. Instead, let’s add the instruction:

ADD A,<const>

In the example below, the programmer asks to add constant 27h to the accu-
mulator. The constant is placed directly after the machine code.

Mnemonic Machine Code

ADD A,27h 40h 27h

This instruction has machine code 40h, in that it is allocated in the MPM at
that address. The microprogram below shows that the first microinstruction
orders (F2F1F0 = ‘000’ and P1,P0 = ‘11’) the sum of the content of the
accumulator with the value from the microprogram memory, aka the constant
that follows the machine code.

Remember that the sequencing pipeline makes it that the PC always targets
the next memory location after the instruction being executed.
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ADD A,<const> 40h 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After the sum, flag register (EFLG = ‘1’) is updated. Also, the PC is forced to
increment (ENPC = ‘1’) to keep the pipeline active, and the result of the sum
(S1,S0 = ‘11’) is memorized in the accumulator. The second microinstruction
simply commands LDMPC = ‘1’ and ENPC = ‘1’ so the next instruction can
be executed.

Let’s apply the immediate addressing mode to define instructions SUB, AND,
OR and CP as well. We get:
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SUB A,<const> 42h 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AND A,<const> 44h 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OR A,<const> 46h 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CP A,<const> 4Ah 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Thanks to immediate address instructions, we no longer have to dedicate input
ports to the acquisition of constants. Consider the example in Section 1.5.3.1
where we needed a constant 01h on input port OP1 to be able to execute the
increasing and decreasing of the content of the accumulator.

Now that we have immediate address instructions at our disposal, let’s revisit
previous examples and substitute each increment (ADD A,OP1) with ADD
A,01h and every decrement (SUB A,OP1) with SUB A,01h. This frees us from
the constraint of needing constants on input ports.

1.6.3 Variables

The term “variable” refers to a container that preserves its content (in our
case, binary code that can represent a number, ASCII character, etc.). This
concept reflects a generic register. As the processor is working, the program
changes the content of a variable, for example to memorize the intermediate
results of operations, as we have seen with the accumulator.

Still, having only one register available is insufficient for most of the pro-
grams that we will write. Take for example the calculation of a bitwise logical
expression like this:

(OP0 ·OP1) + (OP0 + OP1)

where we must first execute the calculation of the first term, memorize it
somewhere, execute the calculation of the second term and finally calculate
the logical sum of the two results.

We could add a set of registers like the accumulator to the processor. Many
commercial processors have a certain number of registers inside. Our choice,
however relies on using a read/write memory of a comparable size to the rest
of the network, which will allow it to be read and written by the processor’s
calculation unit.



1.6 Constants, variables and read/write memory 75

1.6.4 Read/write memory (RAM)

The term “read write memory” refers to a system that can memorize numbers
in an organized way. For historical reasons, this type of memory is called RAM
(Random Access Memory. See Appendix A.2 for more details).

By principle, we can conceive of RAM as a set of equal parallel registers,
each of which can be loaded (written) with a number and then re-read when
we want to fetch the number. Each of these registers can be considered the
physical manifestation of a variable, able to contain a binary code.

RAM can contain a high number of registers that from now on we will call
memory locations (or cells). The number of locations can range from a few
to hundreds in small components and there are systems that can memorize
several billion locations.

Except for specific cases, RAM allow us to
write or read one location at a time. Each cell
is identified by a number called an address (as
with ROM).

The figure on the left shows a simplified rep-
resentation of the main “static” RAM connec-
tions. See Appendix A.2.

The inside of the memory is shown in an ide-
alized form, as a table. Each block of the table
is identified by its address.

Each location preserves the number written
within it or an indeterminate value if nothing
has been written in it yet.

To memorize a number in RAM, we must first decide which location to choose
among all the possibilities. To do this, we must provide the RAM with the
location address we want on the Address lines. Then we must submit the
number to the RAM’s DataIn inputs and then order it to be written (here a
generic Write command is represented).

When we want to re-read the number in a previously written location, we
must provide its address to the memory and then retrieve the contents from
the DataOut outputs.

1.6.5 RAM read/write instructions

Now let’s write the instructions we will need to use RAM. They look like this:

LD (<address>),A

LD A,(<address>)
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As before, LD is the abbreviation for Load, and operand <address> is the
8-bit address to use to access the memory. LD (<address>),A copies the
content of the accumulator and writes it in the memory location specified in
parentheses. LD A,(<address>) reads the content of the memory location in
parentheses and copies it in the accumulator.

In the example below, we load constant 3Fh in the accumulator and then
write it in memory address 45h:

LD A,3Fh

LD (45h),A

Then after using the accumulator for other calculations, we can retrieve the
value that was saved in the memory by writing:

LD A,(45h)

Now let’s adopt the same process to some cases we’ve looked at before, re-
garding where to memorize the operand and the address to send to the RAM.
As before, we count on the fact that the PC was incremented when the in-
struction was decoded. So we indicate the address of the RAM memory cell
that we want to read or write, immediately after the machine code.

1.6.6 The RAM and the processor

We add a RAM to our processor so that the par-
tial results of our calculations can be temporarily
memorized in it. To do this we must manage the
various data paths and necessary control signals.

We will use a component from the simulator li-
brary, a RAM with 256 locations at 8 bits each.
See the figure to the right. This is a synchronous
read/write RAM.

To write, first we introduce the address of the cell on the Address line, and the
number to write in the DataIn inputs. If the Write Enable (WE) line is active,
the number will be memorized at the next rising edge of the clock CK. As
for reading, first we route the memory location, then its content is available
in the output as of the next active edge of the clock. Clearly, to execute the
read/write functions, the CS (Chip Select) line must be activated.

The following figure shows the writing path. In our processor we should re-
trieve the number to write from the ALU output (yellow arrows) to avoid
changing existing paths.
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We don’t need special changes for the address (red arrows) since we’ve decided
to retrieve it from the program memory as mentioned above. As with jumps
and constants, it will be in the location after that of the machine code.

The figure also highlights write enable line WE which we have connected to
microcode line D0.

Thanks to the connections that we have set so far, we can now define the
microprogram for the write instruction in the RAM.

This instruction is coded as 38h, we’re placing the microprogram at this MPM
address. The first microinstruction (see the following table) sets F2F1F0 at
‘110’ so that the accumulator is copied at the ALU output and then it orders
the writing by activating WE.
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LD (<address>), A 38h 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When these signals are active, the PC targets the location holding the address,
which is used by the memory when it writes (at the very next rising edge of
the clock). Here LDMC = ‘0’ to read the second microinstruction, and ENPC
= ‘1’ to force the PC to increment, to retrieve the next instruction.

As in all the previous cases we’ve studied, the second microinstruction forces
the next instruction to load in the MPC to bring the PC forward one increment
to prepare to retrieve the next instruction and keep the pipeline active.
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In the figure below, the arrows show the path of the data being read.

So that the number in the RAM output is loaded in the accumulator, it needs
to follow a dedicated path. For the sake of consistency with previous circuits,
let’s limit the network complexity and use the multiplexer we already have
rather than adding a new one and sacrificing another input port (OP2). Once
we have set the read paths, then we can define the microprogram for the write
instruction in the RAM. It is placed at address 3Ah, so this is its machine
code. The following table shows the microprogram.
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LD A, (<address>) 3Ah 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0

The first microinstruction only commands the PC to increase by one increment
to keep the pipeline mechanism going. This instruction is submitted to the
datapath on the same clock cycle as the location address to read is made
available to the RAM. This is because the PC is targeting the location that
contains the instruction operand. Through synchronous read, the RAM makes
the number available after the active edge of the clock.

The second microinstruction sets F2F1F0 = ‘111’ to let operand B pass
through the ALU, and ‘P1P0 = 10’ so that the multiplexer copies the content
of the RAM location. The number from the RAM is then loaded in the accu-
mulator on the rising edge of the clock because signals S1 and S0 are both set
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at ‘1’. This microinstruction activates lines LDMC and ENPC to take care
of loading the next instruction in the MPC and to bring the PC forward one
increment as in previous cases.

1.6.7 Instructions with direct addressing

The instructions introduced here take advantage of the “direct addressing”
mode to read and write numbers in the memory. Direct addressing means
explicitly indicating the memory location that contains the operand by placing
the address immediately after the instruction machine code.

The last modifications have changed the nature of the connection of multi-
plexer input I2. Now we need to rethink all the instructions that address that
input, as we had to do for input I3.

At the moment, none of the instructions that work on multiplexer input I2
address the RAM memory through an address retrieved from the program
memory. If we tried to execute ADD A,OP2, we would add the content in the
ROM location targeted by the next instruction to the value in the accumula-
tor. This doesn’t make much sense.

Instead, let’s introduce instruction ADD A,(address) whose machine code is
4Ch. This instruction specifies the RAM memory location address that we
want to access immediately after its machine code. This way, the programmer
can decide which memory cell to retrieve the second operand from.
The following table shows the microprogram of the instruction.
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ADD A,(<address>) 4Ch 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0

As we can see, the first microinstruction simply orders the PC to increment
so that the pipeline remains active.

On the next rising edge of the clock, a register inside the RAM memorizes the
address from the program memory, i.e. the one we want to access. (Remember
that because of the pipeline, the PC always targets the memory cell right after
the one with the instruction being executed). After the memory propagation
time, the content of the addressed memory cell will be available at the RAM
output.

So, with the second microinstruction, all we need to do is prepare the datapath
to get the sum of the content of the accumulator and the current RAM output.
All we need to do to get this result is select RAM output (P1P0 = ‘10’),
request the ALU to execute the sum (F2F1F0 = ‘000’) and set S1S0 = ‘11’
for it to be memorized. Lines LDMC and ENPC are activated so that the
next instruction can be executed.
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Similar reasoning is applied to set up instructions SUB, AND, OR, CP, IN
and OUT with direct addressing, giving us:

Mnemonic Hex L
D
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SUB A,(<address>) 4Eh 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0

AND A,(<address>) 50h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0

OR A,(<address>) 52h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0

IN (<address>),OP0 56h 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IN (<address>),OP1 58h 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1

+1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CP A,(<address>) 5Ah 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0

OUT PORT0,(<address>) 5Ch 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0

OUT PORT1,(<address>) 5Eh 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0

Appendix B.5.1 has the list of instructions and microprograms for the final
version Mp8E of the processor to consult. Appendix B.5.2 has its complete
schematic.

1.6.8 Use of the Mp8E network: examples

The following are programming examples for the Mp8E network, which use
RAM memory and immediate constants.

1.6.8.1 Calculating a logical expression

We want to write a program that calculates the logical expression that ap-
peared at the beginning of Section 1.6.3, and give the result on output PORT0:

PORT0 = (OP0 ·OP1) + (OP0 + OP1)

As mentioned before, this expression cannot be calculated by using the only
accumulator we have. Even if we try to simplify by using theorems of Boolean
algebra, we will still need to use a temporary variable to memorize at least
one intermediate calculation result.
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Therefore, we’ll dedicate RAM location 00h for this task. The following is the
mnemonic code and the corresponding machine code:

Mnemonic Code Address Machine Code

IN A,OP0 00h 1Ch

AND A,OP1 01h 0Dh

LD (00h),A 02h 38h 00h

IN A,OP0 04h 1Ch

OR A,OP1 05h 11h

NOT A 06h 14h

OR A,(00h) 07h 52h 00h

OUT PORT0,A 09h 34h

HALT 09h 01h 01h

As you can see, after the execution of the bitwise AND between the two
operands, the partial result is saved in the RAM. Then the second operation
is executed (bitwise OR, negated) and the value obtained is placed in OR
along with that of the RAM, giving us the final result.

1.6.8.2 Calculation of a mathematical expression

The following expression has been assigned to calculate:

PORT0 = OP0/2OP1

Notice that dividing a number by the power of two means executing a number
of right shifts that is equal to the exponent to the power of 2, inserting zeroes
at the left. Also, OP1 should be set to a value lesser than or equal to 8 (for
larger values, the result is forced to zero, whatever the value of OP0 may be).
What follows is one possible solution:

IN A,OP0

LD (00h),A

IN A,OP1

LD (01h),A

OR A,00h

LOOP: JP Z,EXIT

LD A,(00h)

SRL A

(cont.)
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LD (00h),A

LD A,(01h)

SUB A,01h

LD (01h),A

JP LOOP

EXIT: LD A,(00h)

OUT PORT0,A

HALT

First, the values of the two input ports are acquired by the program and
memorized in two variables. We load OP0, the dividend, in the first variable.
Then, this variable will contain the partial (and also the final) results of the
calculations. The value of port OP1 (the exponent of the divisor) is loaded in
the second variable, but it will be decremented to keep count of the number
of right shifts necessary to get the result.

Before entering in the loop started by the LOOP label, the number of required
shifts (which is still in A) must be checked. The instruction OR is used to make
sure this number is not zero (executing an OR with zero does not change the
value of A, but it updates the flags).

If the number of shifts to execute is zero, there is no division to execute and
so we jump to EXIT. There, we update the output port with the initial value
of the dividend and then place the CPU in the HALT state.

Otherwise, we divide the dividend by two by shifting it one position to the
right (the rest of the division is lost). The variable containing the dividend is
retrieved from the memory and brought to the accumulator where its content
is shifted to the right. Then, the new value is updated in the memory.

Then, the variable containing the number of shifts is lowered by one. The
process to achieve this is as follows: the processor reads the content of the
variable from the memory location, subtracts constant 1 and updates the
same location with the new value.

This value is equal to the number of shifts that still have to be executed. The
subtraction has updated the zero flag. This will allow us to see whether that
number is indeed zero.

The unconditioned jump brings us back to the LOOP label where the loop
repeats if the number of shifts hasn’t reached zero yet. If it has, we jump
to EXIT where the final value of the calculation is brought to output port
PORT0 and then the processor stops.

Moving to machine code, we get the following result:
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Mnemonic Code Address Machine Code

IN A,OP0 00h 1Ch

LD (00h),A 01h 38h 00h

IN A,OP1 03h 1Dh

LD (01h),A 04h 38h 01h

OR A,00h 06h 46h 00h

LOOP: JP Z,EXIT 08h 24h 17h

LD A,(00h) 0Ah 3Ah 00h

SRL A 0Ch 20h

LD (00h),A 0Dh 38h 00h

LD A,(01h) 0Fh 3Ah 01h

SUB A,01h 11h 42h 01h

LD (01h),A 13h 38h 01h

JP LOOP 15h 22h 08h

EXIT: LD A,(00h) 17h 3Ah 00h

OUT PORT0,A 19h 34h

HALT 1Ah 01h 01h

1.6.8.3 Generating the samples of a sinusoidal wave

This example will show a program that can generate samples of any kind of
wave, including sinusoidal form waves on port PORT0.

Just by looking at the figure above, we can intuit how the sinusoid samples
were calculated, 8-bit integer approximations of the ideal waveform.
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There are 16 values within an interval of +127..-127 (rendered in hexadecimals
in the figure).

If we have samples representing a whole waveform period, we can memorize
the constants in the program and then transfer them to output port PORT0.
Below is an example of how the program should look for any waveform:

START: LD A,Sample1

OUT PORT0,A

LD A,Sample2

OUT PORT0,A

. .

. .

LD A,SampleN

OUT PORT0,A

JP START

For the sinusoid waveform in the previous figure, we get the following program
(along with the corresponding machine code):

Mnemonic Code Address Machine Code

START: LD A,00h 00h 3Dh 00h

OUT PORT0,A 02h 34h

LD A,31h 03h 3Dh 31h

OUT PORT0,A 05h 34h

LD A,5Ah 06h 3Dh 5Ah

OUT PORT0,A 08h 34h

LD A, 75h 09h 3Dh 75h

OUT PORT0,A 0Bh 34h

LD A, 7Fh 0Ch 3Dh 7Fh

OUT PORT0,A 0Eh 34h

LD A, 75h 0Fh 3Dh 75h

OUT PORT0,A 11h 34h

LD A, 5Ah 12h 3Dh 5Ah

OUT PORT0,A 14h 34h

LD A, 31h 15h 3Dh 31h

OUT PORT0,A 17h 34h

LD A, 00h 18h 3Dh 00h

OUT PORT0,A 1Ah 34h

LD A, CFh 1Bh 3Dh CFh

OUT PORT0,A 1Dh 34h

LD A, A6h 1Eh 3Dh A6h

OUT PORT0,A 20h 34h

(cont.)
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Mnemonic Code Address Machine Code

LD A, 8B 21h 3Dh 8Bh

OUT PORT0,A 23h 34h

LD A, 81h 24h 3Dh 81h

OUT PORT0,A 26h 34h

LD A, 8B 27h 3Dh 8Bh

OUT PORT0,A 29h 34h

LD A, A6h 2Ah 3Dh A6h

OUT PORT0,A 2Ch 34h

LD A, CFh 2Dh 3Dh CFh

OUT PORT0,A 2Fh 34h

JP START 30h 22h 00h

The samples have been designed to be ideally visualized by a “Digital To Ana-
log Converter” (DAC)12. The Deeds simulator offers several types of virtual
DAC components that can graphically visualize the resulting analog wave-
form.

1.6.9 Final considerations on the processor developed here

The Deeds simulator website has the circuit schematics of all the networks we
have studied here. We can use it to test all the programs we’ve developed. We
can also broaden our horizons and design new systems or expansions based
on the processors we have designed so far.

For example, some of the exercises at the end of this chapter ask you to design
new instructions. In fact, the processor we designed here can execute more
complex instructions than those presented so far.

Among the types of processors examined at the beginning of the chapter, our
processor is clearly inspired by the Harvard architecture because it separates
the program memory accesses from those of the RAM memory. We could
continue the process of extending the processor’s capabilities, making it ever
more powerful until it becomes a modern microprocessor.

Nevertheless, proceeding with the approach from this chapter would make the
network ever more complex, diverting us from one of the goals of this book:
preparing the reader to efficiently program any processor from its functional
specifications. This is why the authors believe that the treatment of this topic
should conclude here.

12 Digital To Analog Converters are electronic circuits that can transform a sequence
of numbers (a “digital signal”) into an “analog signal”, whose value is proportional
to the digital signal in the input.
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As of the next chapter, we’ll discard the perspective of the microprocessor
designer and analyze the architecture of a complete 8-bit microprocessor, in-
spired by a processor that really existed and supported by complete devel-
opment instruments. This time we will take the perspective of someone who
wants to use the microprocessor as a component to design electronic systems.
We will no longer pay attention to the minute details of how the processor
functions in its interior.

We will learn to construct a small microcomputer around it (Chapter 2) and
to program it in assembly language (from Chapter 3 on). Finally, we will
expand the system hardware by experimenting with some microprocessor “in-
terfacing” techniques with numerous types of devices.
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1.7 Exercises

The digital content pages of the book on the Deeds simulator website have
outlines of the schematics, diagrams and/or programs to complete for each
exercise. Those same web pages also have the files for the solutions, so that
students can check their work.

1.7.1 Dedicated computing networks

1. Design a combinational network that can multiply an unsigned 6-bit in-
teger by 3.

2. Given two (6-bit unsigned) integers A and B, design a combinational net-
work that can calculate the expression ((A + B)/2) + 5. The result must
also be a 6-bit integer. This means any fractional part must be cut from
the number.

3. Given (8-bit unsigned) integers A, B and C, design a combinational net-
work that can calculate the expression (A/2+B/4+C/8). The result must
also be an 8-bit integer. This means any fractional part must be cut from
the number.

4. Define the ASM chart of the datapath sequencer on Page 14, that make
it possible to calculate the following expressions.

a) 3 · (OP0) + 2 · (OP3)
b) 3/2 · (OP1) + 3 · (OP2)

5. Program the ROM memory of the network on Page 18, so that it can
calculate the following expressions.

a) 3 · (OP0) + 2 · (OP3)
b) 3/2 · (OP1) + 3 · (OP2)

6. Add parity flag P to the ALU on Page 20. It should be calculated according
to logic: P = ‘1’ if the result has an odd number of bits at ‘1’, P = ‘0’ if
that number is even.

7. Using the ALU on Page 20 as a reference, design a combinational com-
ponent with two inputs: ZF and CO, and three outputs: A=B, A>B and
A<B. The component should evaluate the flags supplied by the ALU and
determine if A=B, A>B or A<B.

1.7.2 Programmable computing networks

1. Program the ROM memory of the Mp8A network on Page 22 and in
Appendix B on Page 587, so that it is able to calculate the expressions
indicated.
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We suggest reasoning first in mnemonic code and using the table in Ap-
pendix B on Page 585. It is acceptable to truncate the fractional part in
the calculation.

a) NOT [(OP2) AND (OP3) OR (OP1)]
b) 3/2 · (OP2) + (OP1)
c) [(OP0) + 2 · (OP1)− (OP2) + 3/2 · (OP3)]/4

2. Program the Mp8C network (see Section 1.3.2 and Appendix B.3) so that
the accumulator assumes the timing sequence represented in the figures.
If you need to use a constant, we suggest dedicating an unused input
port to acquire it. For example, if you need to increment the value of the
accumulator, you can assume you have a constant 1 available at input
port OP1.

a) Create the following sequence in the accumulator.

Note: you can freely choose the duration of the values and that of
the interval between the two sequences; note the relation between the
values in the figure (overlooking the remainders, 7 = 14 : 2, 3 = 7 : 2,
1 = 3 : 2...).

b) Create the following sequence in the accumulator.

Note: you can freely choose the duration of the values.



1.7 Exercises 89

3. Program the Mp8D network (see Section 1.5 and Appendix B.4) so that
port PORT0 assumes the timing sequence represented in the figures.

a) Create the following sequence:

Note: you can freely choose the duration of the values and that of
the time interval between the two sequences. Also, input ports can
provide the necessary constants.
The relation between the values in the figure, overlooking the remain-
ders, is as follows: −7 = −(14 : 2), −3 = −(7 : 2), −1 = −(3 : 2)...

b) Create the following sequence:

Note: assume OP0, OP2 and OP3 are different from zero. If you need
to acquire constant 1, it can be set on port OP1.
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4. Write a program for the Mp8E network (refer to Appendix B.5 on
Page 596) that acts as a timer counting the time elapsed from reset.
Once the value at port OP0 is read, the program should decrement the
content of the accumulator until it reaches zero. When the count ends, we
must enter an infinite loop where all the LEDs connected to output ports
PORT0 and PORT1 are repeatedly switched on and off until the system
is reset.

5. Write a program for the Mp8E network (refer to Appendix B.5 on
Page 596) that can calculate a bitwise EXOR between memory locations
01h and 02h, and memorize the result in 00h. Remember that the ALU
does not have the EXOR function but this function can be broken down
into AND and OR operations. To test your solution, we suggest inserting
the following segment of code.

Mnemonic Comment Address Machine Code

LD A,55h ;01010101b 00h 3Dh 55h
LD (01h),A 02h 38h 01h
LD A,AAh ;10101010b 04h 3Dh AAh
LD (02h),A 06h 38h 02h

The expected result: RAM(00h) = FFh.

6. Write a program for the Mp8E network (refer to Appendix B.5 on
Page 596) that can add two 16-bit integers. The variables containing the
addends will be memorized in the RAM memory as of locations 02h and
04h. The result should be memorized as of location 00h. Any carry gen-
erated in the add should be reported by writing FFh in RAM memory
location 06h. If there is no carry, the value saved in location 06h should
be 00h. To test your solution, we suggest inserting the following segment
of code.

Mnemonic Comment Address Machine Code

LD A,FFh ;first number 00h 3Dh FFh
LD (02h),A 02h 38h 02h
LD A,FFh 04h 3Dh FFh
LD (03h),A 06h 38h 03h
LD A,01h ;second number 08h 3Dh 01h
LD (04h),A 0Ah 38h 04h
LD A,00h 0Ch 3Dh 00h
LD (05h),A 0Eh 38h 05h

Expected results: RAM(00h) = 00h, RAM(01h) = 00h, RAM(06h) = FFh.

7. Write a program for the Mp8E network (refer to Appendix B.5 on
Page 596) that can emulate the function of a pre-settable 8-bit syn-
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chronous up/down counter. Output port PORT0 represents the state of
the counter; we can read the current value of the count there.

On input port OP0 we find inputs CK, EN, UP and LD. When EN is
high, it enables the counter. When EN is low the state of the counter is
preserved and the other inputs are ignored.
When UP is set at ‘1’, it commands the counter to count up (+1), oth-
erwise it counts down (-1). When LD is set at ‘1’, it commands the value
at input port OP1 to load in the state of the counter.
The inputs should only be evaluated on the positive edge of the clock CK.
The command priority is as follows: EN, LD, UP. The following table
represents the connections of port OP0.

7 6 5 4 3 2 1 0

nc nc nc nc CK LD UP EN

1.7.3 Microprogramming new instructions

In the exercises below, you will be asked to change the microprogram memory
of the Mp8E network (see Section 1.6 and Appendix B.5 on Page 596) with
the aim to add new instructions.

1. The mnemonic code below represents an instruction that makes it possible
to load constant <const> directly in the RAM memory at the <address>
indicated.

LD (<address>), <const>

Use memory address 60h to define the microprogram associated to that
instruction. In the program memory, the instruction machine code (60h)
is followed by the constant and then by the RAM location address where
we want to memorize the constant.
During the loading process, the previous value in the accumulator is over-
written by the constant. To test your solution, we suggest running the
following program.

Mnemonic Address Machine code

LD (02h),01h 00h 60h 01h 02h

HALT 03h 01h 01h

The expected result: RAM(02h) = 01h.

2. The following mnemonic code represents an instruction that compares
the content of the RAM memory cell <address> with the value of the
constant <const>.
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CP (<address>), <const>

Define the microprogram associated to that instruction as of memory ad-
dress 63h. In the program memory, the instruction machine code (63h) is
followed by the constant then by the location address holding the value
to compare with that constant.
During the compare process, the previous value on the accumulator is
overwritten by the constant. To test your solution, we suggest running
the following program.

Mnemonic Address Machine code

LD A,01h 00h 3Dh 01h

LD (02h),A 02h 38h 02h

CP (02h),01h 04h 63h 01h 02h

HALT 07h 01h 01h

The expected result: active ZF.

3. The following mnemonic code represents an instruction that compares the
content of the RAM memory cell pointed by the first <address1> with
the content of the RAM memory cell pointed by the second <address2>.

CP (<address1>),(<address2>)

Define the microprogram associated with that instruction at memory ad-
dress 66h. In the program memory, the machine code for instruction (66h)
is followed by the first <address1> and then by the second <address2>.
Before executing the comparison, it is necessary to load the content of the
RAM location (pointed by the first address) in the accumulator. To test
your solution, we suggest running the following program.

Mnemonic Address Machine code

LD A,01h 00h 3Dh 01h

LD (02h),A 02h 38h 02h

LD A,01h 04h 3Dh 01h

LD (03h),A 06h 38h 03h

CP (02h),(03h) 08h 66h 02h 03h

HALT 0Bh 01h 01h

The expected result: active ZF.

4. The following mnemonic code represents an instruction that adds the
content of the RAM memory cell pointed by the first <address1> with
the content of the RAM memory cell pointed by the second <address2>,
saving the result in the accumulator.

ADD (<address1>),(<address2>)
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Define the microprogram associated to that instruction at memory address
69h. In the program memory, the machine code for instruction (69h) is
followed by the first <address1> and then by the second <address2>. We
suggest using the following program to test your solution.

Mnemonic Address Machine code

LD A,01h 00h 3Dh 01h

LD (02h),A 02h 38h 02h

LD A,FFh 04h 3Dh FFh

LD (03h),A 06h 38h 03h

ADD (02h),(03h) 08h 69h 02h 03h

HALT 0Bh 01h 01h

The expected result: A = 00h, ZF = 1, CO = 1.

5. The following mnemonic code represents an instruction that adds the con-
tent of the RAM memory cell pointed by the first <address1> with the
content of the RAM memory cell pointed by the second <address2>.
It then saves the result in the RAM location pointed by the third
<address3>.

ADD (<address1>),(<address2>),(<address3>)

Define the microprogram associated with that instruction at memory ad-
dress 6Ch. In the program memory, the instruction machine code (6Ch) is
followed by <address1>,<address2> and<address3> one after the other.
In the add process, the previous value in the accumulator is overwritten.
We suggest using the following program to test your solution.

Mnemonic Address Machine code

LD A,01h 00h 3Dh 01h

LD (02h),A 02h 38h 02h

LD A,FFh 04h 3Dh FFh

LD (03h),A 06h 38h 03h

ADD (02h),(03h),(04h) 08h 6Ch 02h 03h 04h

HALT 0Ch 01h 01h

The expected result: RAM(04h) = 00h, ZF = 1, CO = 1.

6. Following the same criteria as those in the previous exercise, define the
microprograms associated to the instructions listed in the following table
and allocated at the address indicated.

Mnemonic Address

SUB (<address1>),(<address2>),(<address3>) 71h

AND (<address1>),(<address2>),(<address3>) 76h

OR (<address1>),(<address2>),(<address3>) 7Bh

We suggest testing your solutions with the following test programs.
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Mnemonic Address Machine code

LD A,01h 00h 3Dh 01h

LD (02h),A 02h 38h 02h

LD A,02h 04h 3Dh 02h

LD (03h),A 06h 38h 03h

SUB (02h),(03h),(04h) 08h 71h 02h 03h 04h

HALT 0Ch 01h 01h

The expected result: RAM(04h) = FFh, CO = 1.

Mnemonic Address Machine code

LD A,FFh 00h 3Dh FFh

LD (02h),A 02h 38h 02h

LD A,55h 04h 3Dh 55h

LD (03h),A 06h 38h 03h

AND (02h),(03h),(04h) 08h 76h 02h 03h 04h

HALT 0Ch 01h 01h

The expected result: RAM(04h) = 55h.

Mnemonic Address Machine code

LD A,00h 00h 3Dh 00h

LD (02h),A 02h 38h 02h

LD A,55h 04h 3Dh 55h

LD (03h),A 06h 38h 03h

OR (02h),(03h),(04h) 08h 7Bh 02h 03h 04h

HALT 0Ch 01h 01h

The expected result: RAM(04h) = 55h.

7. The following mnemonic code represents an instruction that right shifts
the content of the <address> memory location and inserts zeroes at the
left.

SRL (<address>)

Define the microprogram associated to that instruction at memory ad-
dress 80h. In the program memory, the instruction machine code (80h)
is followed by the <address>. Only the accumulator can right shift its
content so its previous value will be overwritten. We suggest using the
following program to test your solution.

Mnemonic Address Machine code

LD A,01h 00h 3Dh 01h

LD (02h),A 02h 38h 02h

SRL (02h) 04h 80h 02h

HALT 06h 01h 01h

The expected result: RAM(02h) = 00h, ZF = 1.
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8. The following mnemonic code represents an instruction that left shifts the
content of the memory location pointed by <address> and inserts zeroes
at the right.

SLL (<address>)

Define the microprogram associated to that instruction at memory ad-
dress 85h. In the program memory, the instruction machine code (85h) is
followed by the <address>. Only the accumulator can left shift its content
so its previous value will be overwritten. We suggest using the following
program to test your solution.

Mnemonic Address Machine code

LD A,80h 00h 3Dh 80h

LD (02h),A 02h 38h 02h

SLL (02h) 04h 85h 02h

HALT 06h 01h 01h

The expected result: RAM(02h) = 00h, ZF = 1.
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1.8 Solutions

1.8.1 Dedicated computing networks

1.

Multiplying by three is the same as
adding the same number three times. In
base ten, the highest expressible 6-bit
number is 26 − 1 = 63. So, the lowest
number of bits that are needed to express
the result is dlog2(63 · 3)e = 8.

2.

After adding A and B, we right
shift the result by one bit and we
add it to constant 5.
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3.
Let’s shift operands
A, B and C before
adding them. Shifting
is required to divide
them by the amount
assigned.

4. a) Calculating expression 3 · (OP0) + 2 · (OP3).

In state (a), OP0 is added to the content of the accu-
mulator (zero). In other words, OP0 is imported into
the accumulator.

In states (b) and (c), OP0 is again added to the con-
tent of the accumulator, giving us 3 · (OP0).

In states (d) and (e), OP3 is added twice to the con-
tent of the accumulator, giving us the calculation of
the expression that was called for.

Finally in state (f), the network is stopped. To ex-
ecute a new calculation, the network must be reset.
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b) Calculation of expression 3/2 · (OP1) + 3 · (OP2).

In state (a), OP1 is added to the content of the accu-
mulator (zero). In other words, OP1 is imported into
the accumulator.

In states (b) and (c) OP1 is again added to the con-
tent of the accumulator, giving us 3 · (OP1).

In state (d) the accumulator is ordered to right shift,
giving us 3/2 · (OP1). Remember that the shift oper-
ation inserts a zero at the left.

In states (e), (f) and (g) OP2 is added three times to
the content of the accumulator, giving us the calcu-
lation of the expression that was called for.

In state (h) the network is stopped. To execute a new
calculation, the network must be reset.

5. a) Calculation of expression 3 · (OP0) + 2 · (OP3).

Address Content

00h 0000.0011

01h 0000.0011

02h 0000.0011

03h 1100.0011

04h 1100.0011

05h 0010.0000

At address 00h, OP0 is added to the content
of the accumulator (zero). In other words OP0
is imported into the accumulator. At the next
two locations, OP0 is added again to the con-
tent of the accumulator, giving us 3 · (OP0).
At locations 03h and 04h, OP3 is added twice
to the content of the accumulator, giving us
the calculation of the expression that was
called for. Finally, the network is stopped at
the last ROM location. To execute a new cal-
culation, the network must be reset.

b) Calculating expression 3/2 · (OP1) + 3 · (OP2).

At address 00h, OP1 is added to the content of the accumulator, which
has a value of 00h after the reset (see the following table). At addresses
01h and 02h, OP1 is again added to the content of the accumulator,
giving us 3 · (OP1).
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Address Content

00h 0100.0011

01h 0100.0011

02h 0100.0011

03h 0000.0001

04h 1000.0011

05h 1000.0011

06h 1000.0011

07h 0010.0000

At 03h the accumulator is ordered to right
shift, giving us 3/2 · (OP1). Remember that
the shift operation inserts a zero at the left.
From address 04h to 06h, OP2 is added to the
content of the accumulator three times, giv-
ing us the calculation of the expression that
was called for. At location 07h the network
is stopped. To execute a new calculation, we
must reset the network.

6. The logical function EXOR is also called an “odd function” because it
generates a 1 only if the number of 1’s at the input is odd.
We get: P = F7 ⊕ F6 ⊕ F5 ⊕ F4 ⊕ F3 ⊕ F2 ⊕ F1 ⊕ F0.
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7. By analyzing the Flags table below, (also available on Page 21), we can
derive the network seen on the right.

Flags

Result CO ZF

A = B 0 1

A > B 0 0

A < B 1 0

1.8.2 Programmable computing networks

1. The following are solutions expressed in terms of mnemonic codes and
machine codes.

a) Calculating the expression: NOT [(OP2) AND (OP3) OR (OP1)]

Mnemonic Address Machine code

IN A,OP2 00h 9Fh

AND A,OP3 01h CBh

OR A,OP1 02h 4Fh

NOT A 03h 13h

HALT 04h 20h

b) Calculating the expression: 3/2 · (OP2) + (OP1)

Mnemonic Address Machine code

IN A,OP2 00h 9Fh

ADD A,OP2 01h 83h

ADD A,OP2 02h 83h

SRL A 03h 01h

ADD A,OP1 04h 43h

HALT 05h 20h
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c) Calculating the expression: 1/4·[(OP0)+2·(OP1)−(OP2)+3/2·(OP3)]

Mnemonic Address Machine code

IN A,OP3 00h DFh

ADD A,OP3 01h C3h

ADD A,OP3 02h C3h

SRL A 03h 01h

SUB A,OP2 04h 87h

ADD A,OP1 05h 43h

ADD A,OP1 06h 43h

ADD A,OP0 07h 03h

SRL A 08h 01h

SRL A 09h 01h

HALT 0Ah 20h

2. The following are solutions expressed in terms of mnemonic codes and
machine codes.

a) Here, we assume we have constant 0Eh available at input port OP0.
The instruction NOP takes no action but adds a delay, and we can add
more than one. This is a way to regulate the period of the waveform
generated.

Label Mnemonic Address Machine code

START: IN A,OP0 00h 1Ch

SHIFT: SRL A 01h 20h

JP NZ, SHIFT 02h 26h 01h

NOP 04h 00h

JP START 05h 22h 00h

b) Assume that we have constant 01h available at input port OP1.

Label Mnemonic Address Machine code

IN A,OP0 00h 1Ch

CHECKH: CP A,OP2 01h 32h

JP Z,CHECKL 02h 24h 07h

INC: ADD A,OP1 04h 05h

JP CHECKH 05h 22h 01h

CHECKL: CP A,OP0 07h 30h

JP Z,CHECKH 08h 24h 01h

DEC: SUB A,OP1 0Ah 09h

JP CHECKL 0Bh 22h 07h
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3. The following are solutions expressed in terms of mnemonic codes and
machine codes.

a) Assume we have constant 01h available at input port OP1 and con-
stant 0Eh at input port OP0.

Label Mnemonic Address Machine code

START: IN A,OP0 00h 1Ch

LOOP: OUT PORT0,A 01h 34h

SRL A 02h 20h

NOT A 03h 14h

ADD A,OP1 04h 05h

OUT PORT0,A 05h 34h

NOT A 06h 14h

ADD A,OP1 07h 05h

JP NZ,LOOP 08h 26h 01h

JP START 0Ah 22h 00h

b) Assume we have constant 01h available at input port OP1, and that
we can never have a zero in input ports OP0, OP2 or OP3.

Label Mnemonic Address Machine code

START: IN A,OPO 00h 1Ch

OUT PORT0,A 01h 34h

IN A,OP3 02h 1Fh

PAUSE1: SUB A,OP1 03h 09h

JP NZ,PAUSE1 04h 26h 03h

IN A,OP0 06h 1Ch

DEC: SUB A,OP1 07h 09h

OUT PORT0,A 08h 34h

JP NZ,DEC 09h 26h 07h

IN A,OP2 0Bh 1Eh

PAUSE2: SUB A,OP1 0Ch 09h

JP NZ,PAUSE2 0Dh 26h 0Ch

INC: ADD A,OP1 0Fh 05h

CP A,OP0 10h 30h

OUT PORT0,A 11h 34h

JP NZ,INC 12h 26h 0Fh

JP START 14h 22h 00h
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4. The mnemonic codes are on the left and the machine codes are on the
right.

Label Mnemonic Comment Addr. Machine code

IN A,OP0 00h 1Ch

DECR: SUB A,01h ;delay 01h 42h 01h

JP NZ,DECR 03h 26h 01h

LIGHTS: LD A,FFh ;LED on/off 05h 3Dh FFh

OUT PORT0,A 07h 34h

OUT PORT1,A 08h 35h

LD A,00h 09h 3Dh 00h

OUT PORT0,A 0Bh 34h

OUT PORT1,A 0Ch 35h

JP LIGHTS 0Dh 22h 05h

5. Since the MP8E network’s ALU cannot calculate a bitwise EXOR, it has
to do it in an alternative way.
The EXOR operator can be expressed in terms of AND and OR, which
can be directly calculated by the ALU in this network:

(A⊕B) = A ·B +A ·B

To calculate this expression we must use an 8-bit variable to memorize the
result of one of the two AND operations (let’s reserve RAM location 00h
for the purpose). The result of the remaining AND can be kept directly in
the accumulator, which will be used to calculate the OR with the previous
intermediate result. This will provide the desired result. Remember that
operands A and B were previously memorized by the test program in
RAM locations 01h and 02h as suggested in the exercise:

Label Mnemonic Comment Address Machine code

LD A,55h ;test program 00h 3Dh 55h

LD (01h),A 02h 38h 01h

LD A,AAh 04h 3Dh AAh

LD (02h),A 06h 38h 02h

The final result is memorized at location 00h.
The program begins by calculating the first intermediate result A · B,
reading operand A from the RAM memory, negating it and calculating
the AND with operand B. The result of the sequence of operations is saved
at location 00h to make it possible to calculate the second intermediate
result.
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LD A,(01h) ;solution 08h 3Ah 01h

NOT A 0Ah 14h

AND A,(02h) ;(not A) and B 0Bh 50h 02h

LD (00h),A ;partial result in 00h 0Dh 38h 00h

By following the same sequence of operations, we calculate the second
intermediate A · B result, which will then be OR-ed with the previous
one.

LD A,(02h) 0Fh 3Ah 02h

NOT A 11h 14h

AND A,(01h) ;A and (not B) 12h 50h 01h

OR A,(00h) ;OR between the two terms 14h 52h 00h

Finally, the total result of the expression is memorized in memory location
00h as ordered in the text. The program ends by putting the processor in
the HALT state.

LD (00h),A ;result in RAM 16h 38h 00h

HALT 18h 01h 01h

6. The following is the solution expressed in terms of mnemonic codes and
machine codes. This is preceded by the instructions suggested in the text.

Label Mnemonic Comment Addr. Machine code

LD A,FFh ;test program 00h 3Dh FFh

LD (02h),A 02h 38h 02h

LD A,FFh 04h 3Dh FFh

LD (03h),A ;FFFFh first number 06h 38h 03h

LD A,01h 08h 3Dh 01h

LD (04h),A 0Ah 38h 04h

LD A,00h ;0001h second number 0Ch 3Dh 00h

LD (05h),A 0Eh 38h 05h

LD A,00h ;carry variable = 0 10h 3Dh 00h

LD (06h),A 12h 38h 06h

LD A,(02h) 14h 3Ah 02h

ADD A,(04h) ;add low bytes, 16h 4Ch 04h

LD (00h),A ;save result 18h 38h 00h

LD A,(03h) 1Ah 3Ah 03h

JP NC,NEXTB ;if carry, increment 1Ch 2Ah 2Ah

ADD A,01h ;the next byte 1Eh 40h 01h

JP NC,NEXTB ;if carry, save 20h 2Ah 2Ah

(cont.)
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LD (01h),A ;result in (01h) 22h 38h 01h

LD A,FFh ;set carry variable 24h 3Dh FFh

LD (06h),A 26h 38h 06h

LD A,(01h) ;A= previous result 28h 3Ah 01h

NEXTB: ADD A,(05h) ;add high bytes 2Ah 4Ch 05h

LD (01h),A ;save result 2Ch 38h 01h

JP NC,END 2Eh 2Ah 34h

LD A,FFh ;if carry, 30h 3Dh FFh

LD (06h),A ;carry variable = 1 32h 38h 06h

END: HALT 34h 01h 01h

7. For this solution, we decided to use two variables: one to store the state of
the counter and the other to store the inputs that we read. After initial-
izing the state of the counter to zero, input CK is evaluated. If it is not
zero, we execute the evaluation again and wait for the value to be one.

Label Mnemonic Comment Addr. Machine Code

RESET: LD A,00h 00h 3Dh 00h

LD (01h),A ;state initialization 02h 38h 01h

OUT PORT0,A 04h 34h

START: IN A,OP0 ;read comands 05h 1Ch

AND A,00001000b ;check CK 06h 44h 08h

JP NZ,START ;waiting for CK = 0 08h 26h 05h

Once out of the loop, the value of CK is zero. At this point, we enter a
new loop, and wait for the value to be one. We leave the loop only at the
rising edge of CK.

CHECK1: IN A,OP0 0Ah 1Ch

LD (00h),A ;save in 00h 0Bh 38h 00h

AND A,00001000b ;check CK 0Dh 44h 08h

JP Z,CHECK1 ;waiting for CK = 1 0Fh 24h 0Ah

Now the commands can be evaluated. First they are saved in their variable
at RAM memory address 00h, then the command bits are evaluated one
by one according to the priority specification, through a bitwise AND
mask.

Firstly, we check if enable is activated, and if it isn’t we go back to wait
for the next rising edge of CK.
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LD A,(00h) ;reload commands 11h 3Ah 00h

AND A,00000001b ;check EN value 13h 44h 01h

JP Z,START 15h 24h 05h

Then we check the LD load input. If it is active, we jump to the LOAD
label, otherwise we move ahead.

LD A,(00h) ;check LD value 17h 3Ah 00h

AND A,00000100b 19h 44h 04h

JP NZ,LOAD 1Bh 26h 2Dh

We then evaluate the UP input. If it is active, the state of the counter
increments; if not, it decrements.
In either case, we jump to the UPDATE label where the state and the
output are updated.

LD A,(00h) ;check UP value 1Dh 3Ah 00h

AND A,00000010b 1Fh 44h 02h

LD A,(01h) ;get state value 21h 3Ah 01h

JP NZ,UP 23h 26h 29h

DN: SUB A,01h ;decrement it 25h 42h 01h

JP UPDATE 27h 22h 2Eh

UP: ADD A,01h ;increment it 29h 40h 01h

JP UPDATE 2Bh 22h 2Eh

If the counter has been ordered to load, port OP1 is acquired and we
continue updating the state and the outputs so that we can begin again
from the START label.

LOAD: IN A,OP1 ;read OP1 2Dh 1Dh

UPDATE: LD (01h),A ;save and copy it 2Eh 38h 01h

OUT PORT0,A ;to the port 30h 34h

JP START 31h 22h 05h
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1.8.3 Microprogramming new instructions

1. The instruction:

Mnemonic Machine Code

LD (<address>),<const> 60h <const> <address>

Its microprogram:

Hex L
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60h 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 (a)

+1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 (b)

+2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (c)

Notes:

a) The constant comes from the program memory (the PC always points
to the location ahead of the one of the instruction currently being
executed). This means that the paths are set to load the constant
in the accumulator (P1P0 = ‘11’ to select the program memory as
input B of the ALU; F2F1F0 = ‘111’ to copy input B of the ALU
onto the output; S1S0 = ‘11’ to store the output of the ALU in the
accumulator). Also, the PC is ordered to increment.

b) The location address where the constant has to be saved comes from
the program memory. Thus, the paths for loading the content of the
accumulator in the RAM memory cell pointed by the program memory
are defined (F2F1F0 = ‘110’ to copy input A of the ALU onto the
output; WE = ‘1’ to order the number at the RAM input to be stored).
The PC is ordered to increment to point to the next instruction to ex-
ecute. On the next positive edge of the clock, the RAM memory reads
the address and the input number is written in the desired location.

c) The PC is ordered to increment and the MPC to load so that the next
instruction can be executed.
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2. The instruction:

Mnemonic Machine Code

CP (<address>),<const> 63h <const> <address>

Its microprogram:

Hex L
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63h 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 (a)

+1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (b)

+2 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 (c)

Notes:

a) The constant comes from the program memory (the PC always points
to the location ahead of the one of the instruction currently being
executed). This means that the paths are set to load the constant
in the accumulator (P1P0 = ‘11’ to select the program memory as
input B of the ALU; F2F1F0 = ‘111’ to copy input B of the ALU
onto the output; S1S0 = ‘11’ to store the output of the ALU in the
accumulator). Also, the PC is ordered to increment.

b) Now, the address that will be acquired by the RAM (which is syn-
chronous) on the next positive clock edge comes from the program
memory. Only the PC is ordered to increment to maintain the pipeline
active.

c) Now that the address has been read by the RAM, the paths to compare
the RAM output value with the content of the accumulator are set
(P1P0 = ‘10’ to select the RAM memory as input B of the ALU;
F2F1F0 = ‘001 to execute the subtraction A-B; EFLAG = ‘1’ to
store the new flag).
Notice that the result of the subtraction is not saved in the accumu-
lator. The only purpose of instruction CP is to change the flags to
compare the values and see what relationship there is between them.
Also, the PC is ordered to increment to keep the pipeline active and
the MPC to load to execute the next instruction.
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3. The instruction:

Mnemonic Machine Code

CP (<address1>),(<address2>) 66h <addr.1> <addr.2>

Its microprogram:

Hex L
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66h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a)

+1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 (b)

+2 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 (c)

Notes:

a) The first address comes from the microprogram (the PC always points
to the location ahead of the one of the instruction currently being
executed because of the pipeline mechanism), and it is read by the
RAM memory on the next positive edge of the clock. Then, the PC
is incremented.

b) Now, the content of the first address comes from the RAM memory,
which means that the paths are set to load the constant in the ac-
cumulator (P1P0 = ‘10’ to select the RAM memory output as ALU
input B; F2F1F0 = ‘111’ to copy input B of the ALU onto the output;
S1S0 = ‘11’ to update the content of the accumulator with the ALU
output value). The PC is incremented to maintain the pipeline.

c) Now, the content of the second address, that was read on the previous
positive edge of the clock, comes from the RAM memory, so the path
to compare the RAM output value to the content of the accumulator
is set (P1P0 = ‘10’ to select the RAM memory output as ALU input
B; F2F1F0 = ‘001’ to subtract the content of the accumulator from
the RAM output; EFLG = ‘1’ to store the flags generated by that
subtraction, the only result of interest). The PC is incremented to
maintain the pipeline and the MPC is ordered to load to execute the
next instruction.
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4. The instruction:

Mnemonic Machine Code

ADD (<address1>),(<address2>) 69h <addr.1> <addr.2>

Its microprogram:

Hex L
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69h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0

+2 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 (a)

Note:

a) The reasoning behind this exercise is similar to that of the previous
one, except that the last microinstruction prepares the paths to add
the value from the RAM to the content of the accumulator.
This time the result of the addition is saved in the accumulator (P1P0
= ‘10’ to select the RAM memory output as ALU input B; F2F1F0
= ‘000’ to add the content of the accumulator to the RAM output;
EFLG = ‘1’ to store the flags generated by the addition; S1S0 = ‘11’
to save the result in the accumulator).

5. The instruction:

Mnemonic Machine Code

ADD (<adr1>),(<adr2>),(<adr3>) 6Ch <adr1> <adr2> <adr3>

Its microprogram:

Hex L
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6Ch 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a)

+1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0

+2 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 (b)

+3 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 (c)

+4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (d)
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Notes:

a) The first and second microinstructions follow the same reasoning as
those in the last two exercises. The first microinstruction increments
the PC, waiting for <adr1> to be read by the program memory. The
second one loads the value pointed by <adr1> in the accumulator and
increments the PC.

b) The third address comes from the program memory, but the last ad-
dress read by the RAM was the second one, so the paths to add its
content to that of the accumulator are set. The result is saved in the
accumulator (P1P0 = ‘10’ to select the RAM memory output as ALU
input B; F2F1F0 = ‘000’ to add the content of the accumulator to
the RAM output; S1S0 = ‘11’ to save the result of the add in the
accumulator).

c) Now that the result is ready in the accumulator, the paths are set
to bring it to the memory location pointed by the third address, the
last one read by the RAM (F2F1F0 = ‘110’ to copy the value of the
accumulator to the ALU output; WE = ‘1’ to store the ALU output in
the memory cell pointed by the third address). The PC is incremented
to maintain the pipeline.

d) The PC is incremented to keep the pipeline active and the MPC is
ordered to load to execute the next instruction.

6. The instruction:

Mnemonic Machine Code

SUB (<adr1>),(<adr2>),(<adr3>) 71h <adr1> <adr2> <adr3>

Its microprogram:

Hex L
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71h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0

+2 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 (a)

+3 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

+4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The instruction:

Mnemonic Machine Code

AND (<adr1>),(<adr2>),(<adr3>) 76h <adr1> <adr2> <adr3>

Its microprogram:

AND (<address1>),(<address2>),(<address3>)

Hex L
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76h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0

+2 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 (a)

+3 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

+4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The instruction:

Mnemonic Machine Code

OR (<adr1>),(<adr2>),(<adr3>) 7Bh <adr1> <adr2> <adr3>

Its microprogram:

Hex L
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7Bh 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0

+2 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 (a)

+3 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1

+4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note (for all three microprograms):

a) The reasoning behind this exercise is similar to that of the previous
one. The three microprograms are identical, except for the third mi-
croinstruction which executes the required operation (a subtraction if
F2F1F0 = ‘001’, a bitwise AND if F2F1F0 = ‘010’ or a bitwise OR if
F2F1F0 = ‘011’).
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7. The instruction:

Mnemonic Machine Code

SRL (<address>) 80h <address>

Its microprogram:

Hex L
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80h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (a)

+1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 (b)

+2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (c)

+3 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 (d)

+4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (e)

Notes:

a) The RAM memory reads the program memory output address on the
next edge of the clock. We must allow one cycle to pass while taking
no action. Since the result must be saved at the same address, which
comes from the program memory, the PC is not ordered to increment
so that the same address is sent to the RAM.

b) The paths are set to save the RAM output in the accumulator (P1P0
= ‘10’ to select the RAM as ALU input B; F2F1F0 = ‘111’ to copy
input B in the ALU output; S1S0 = ‘11’ to save the ALU output in
the accumulator).

c) It commands the accumulator to right shift (S1S0 = ‘01’).

d) The paths are set to load the content of the accumulator in the RAM
location pointed by the program memory output address (F2F1F0
= ‘110’ to copy the content of the accumulator to the ALU output;
EFLG = ‘1’ to update the flag register; WE = ‘1’ to store the output
of the ALU in the RAM memory location pointed by <address>).
The flag register is enabled to evaluate the accumulator and the PC
is ordered to increment, to point to the next instruction.

e) The MPC is ordered to load the next instruction and the PC is incre-
mented to keep the pipeline active.
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8. The instruction:

Mnemonic Machine Code

SLL (<address>) 85h <address>

Its microprogram:

Hex L
D
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E
N

P
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J
2

J
1

J
0

E
F

L
G

E
O

1

E
O

0
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F
1

F
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S
1
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P
1

P
0

W
E

N
ot

es

85h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

+2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 (a)

+3 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1

+4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note:

a) Here, the same reasoning is applied as in the previous exercise, except
that the third microinstruction commands a left shift (S1S0 = ‘10’).
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A system based on the DMC8 microprocessor

Abstract In this chapter, we introduce the DMC8 microprocessor through
the study of a microcomputer based on it. In particular we will present the
organization of its bus, its architecture, and how it carries out instructions.
Then we will start to detail the behavior over time of the processor’s bus sig-
nals. Consequently we will present how memory and input/output subsystems
can be organized and designed. Finally we will show how the Deeds simulator
supports the development of projects based on the DMC8 microprocessor,
including writing programs and functionally testing them.

2.1 The DMC8 microprocessor

In Chapter 1 we built and thoroughly studied the architecture of a precursor
to a microprocessor, detailing each and every mechanism. The main goal was
not to learn to program that specific device but to give a clear idea of how
a general, simplified processor can work by getting into the particulars of its
logical operations. The point of view was that of a microprocessor architecture
designer.

From this chapter on, the goals and points of view will be different. We are no
longer interested in studying the details of microprocessor architecture. Our
interest is rather on the macro-functional aspect of microprocessors, that is
studying the set of instructions and their influence on the components the
system programmer directly interfaces with (registers, memory, input and
output ports, timers...).

The explanation takes the point of view of microprocessor-based system de-
signers, i.e. those who first have to integrate microprocessors into systems
based on the tasks they must complete and then program them so that they
execute those tasks correctly.

As outlined at the beginning of Chapter 1, since the dawn of the microproces-
sor in the early ’70s, they have constantly evolved to be capable of executing
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faster and faster calculations. Obviously, along with this potential their archi-
tecture has grown equally complex.

From an educational point of view, this means that it might not be a good idea
to use a new-generation, commercial microprocessor to introduce the subject.
The first microprocessors, which were simpler, are educationally more ap-
proachable, and yet, they were designed in function of the technology and
components that were available then. On the other hand, they often incorpo-
rated now outdated accessory functions and devices which makes them harder
to understand for students today.

The educational approach of this book requires a microprocessor that is not
very complex, similar to the first devices to be sold commercially. At the same
time, it needs to be as orderly as possible and have the essential functionalities
needed for teaching purposes. This is why, a few years ago, we reinvented a
microprocessor to fit our educational objectives, supported by an appropriate
development tool. This is how the DMC8 (Deeds Microcomputer - 8 bit) was
created within the Deeds simulator environment.

So as not to distance ourselves too much from commercial devices, the DMC8
was designed with a real and historically relevant 8-bit microprocessor in
mind, the Z80-CPU from Zilog. The Z80-CPU was introduced in 1976 by
Federico Faggin (who founded Zilog, Inc., among other initiatives, as cited
in Chapter 1), as an improvement on the previous (and popular) Intel 8080.
Because it was compatible with its predecessor and offered improvements, it
quickly became a market standard. Its architecture and set of instructions
have survived in some microcontrollers even today.

The DMC8 has kept a large part of the internal architecture of the Z80-CPU,
minus some elements to simplify the structure. Other elements have been
added to make the relationship with more recent microprocessors easier. For
those who are already familiar with the Z80-CPU, some of its elements like
dynamic memory management and the alternative register bank have been
taken out for the DMC8. Its interrupt vector management has been made
simpler and more like some of the devices currently in use. The native set of
instructions and the native assembly language have been largely maintained,
except for instructions regarding the parts of the internal architecture that
have been eliminated.

The DMC8 also has an alternative work mode called the D8080, that config-
ures it to be much like its predecessor, the Intel 8080. It can be programmed
through its original assembly language, which has remained almost totally
intact.

The DMC8 is currently configured as a soft-processor, meaning it doesn’t
correspond to any commercially available component but its hardware can
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be loaded in programmable components like FPGAs1, by using the Deeds
simulation and development environment.

Therefore, we can design, simulate and then build a whole digital system
that includes a DMC8 microprocessor within Deeds. The system can easily
be implemented on one of the FPGA cards supported by Deeds and avail-
able commercially. The physical implementation of entire digital systems on
prototype boards will be analyzed in Chapter 5.

Deeds includes the Microcomputer Emulator (Deeds-McE), which has a text
editor for writing programs and an interactive debugger2 to develop them. The
Digital Circuit Simulator (Deeds-DcS) makes it possible to develop projects
that include many DMC8-based microcomputer models that are resizable in
terms of RAM, ROM and input/output ports.

We will introduce these development instruments toward the end of this chap-
ter in Section 2.4.

2.1.1 The internal architecture of the DMC8 processor

Let’s look again at the figure from the beginning of Chapter 1, where we
introduced the Von Neumann model bus architecture. We are going to consider
the internal structure of the microprocessor (the CPU, in the figure), that we
implement with the DMC8.

The DMC8 microprocessor is internally organized around the blocks repre-
sented by the following figure.

1 FPGA (Field Programmable Gate Arrays). These are components that contain a
large number of logical elements that can be internally joined and configured by
a programmable connection matrix.

2 A “debugger” is generally a software tool that identifies and eliminates “bugs”,
i.e. errors in programs.
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At the center of the drawing we find the 8-bit arithmetic logic unit (ALU),
which can execute basic arithmetic operations (add, subtract, compare) and
bitwise logical operations. The size of a microprocessor is measured by its
calculation unit and since this one works with 8 bits, the DMC8 is an 8-bit
microprocessor. Now let’s look at the internal bus connections among the
various elements that assume different names according to their functions.

To the right of the ALU we see the internal 8-bit and 16-bit registers, which
can store data and, as we shall see, even memory addresses.

The 8-bit Internal Data Bus transports information (data and instructions)
to and from the various internal devices. Since the data can be transferred in
both directions, the connection is called bidirectional.

It is connected through bidirectional buffers toward the Data Bus, which is
used to connect all the external devices (memory, input/output devices). For
more about bidirectional connections and buffers see Appendix A.3.

The 16-bit Internal Address Bus allows the CPU to use an identification num-
ber to select the external device to exchange the above data with at a partic-
ular moment. The Internal Address Bus is copied to the Address Bus through
unidirectional buffers so as to be available to all the devices in the system.
Note that the addresses are generated by the CPU and received by all the
other elements (see the arrows in the figure).

The Internal Control Bus is a heterogeneous set of control lines. Almost all
of its lines come from the sequencer (at left in the figure) and control the
datapath of the processor. Some of these lines are brought toward the Control
Bus to manage the timing and device selection in the system. Others come
from outside. Among these lines, we have the Clock and Reset, which are
found in every synchronous digital systems.



2.1 The DMC8 microprocessor 119

On the left side of the figure, we see the circuit in charge of executing the
instructions. The Instruction Register receives and stores the machine code of
the instruction to execute, which was retrieved from the memory through the
data bus.

The Instruction Decoder accesses the register and obtains the information
necessary for the sequencer to be able to synchronously manage all the control
lines of the datapath elements in rigorous sequence3.

The sequencer is initialized by the external Reset line and synchronized by
the Clock signal (the Deeds DMC8 microcomputer works with a 10 MHz
frequency clock)4.

2.1.2 Memory system structure

Let’s look again at the figure of the bus-organized Von Neumann model, but
this time, let’s focus on the memory system, which contains both data and
programs.

We have seen that the DMC8 has a 16-line address bus so it can address up
to 216 locations. Thus the overall “memory space” is 216 = 64 kB5. Also, the
data bus has 8 bits so the memory locations will be of that size.

For the moment, we won’t make a distinction among the different technologies
that the memory components (RAM or ROM) could be made with. Here we
will only consider the logical-functional aspects (for more information on the
subject see Appendix A).

3 The DMC8 sequencer does not support the pipeline, since it must keep compat-
ible with the functioning of the Z80-CPU processor. As we will see further on
(Section 2.2.3), different clock cycles (at least four) will be required to execute
the instructions. Here, we will not go into greater detail on the internal structure
of the sequencer.

4 The DMC8 has been tested on FPGA boards up to 50 MHz clock.
5 ’kbytes’. The prefix ‘k’ (kilo) is defined by the International System of Units (SI)

as 1000. However, in some areas of information technology and in this book the
prefix ‘k’ indicates 1024 (210). The International Electrotechnical Commission
(IEC) addressed this ambiguity defining the prefix ‘ki’ as 1024, which should be
used instead, but this hasn’t really entered in the current practice.
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As we saw in Chapter 1, the program should always start at location 0000h.
This requirement goes for the DMC8 as well, so the ROM should be allocated
as of that address.

To concisely describe the memory system, the system designer normally uses
something called a Memory Map, as in the examples in the figure below. The
map shows the type of memory that the designer made available to the micro-
processor, by address intervals, i.e. which RAM or ROM areas are physically
there and at what addresses.

In the example on the left, the memory space is full and it is divided into two
equal areas of 32 KB each. When the processor sends an address from 0000h
to 7FFFh, the ROM responds, otherwise the RAM responds.

In the example in the middle, the designer chose to reduce costs and provide
our system with only 16 KB of ROM. Evidently, the size of the program in this
case is relatively small so we simply need to use a physically smaller ROM.

In the example on the right, the program needs more ROM space while its
calculation requirements are small so it will suffice to have less RAM.

In the second and third examples, we see “Free Memory Space”. This simply
means that no physical memory devices correspond to those addresses and the
programmer cannot use those areas because for all intents and purposes they
don’t exist. Reading those addresses would provide random values depending
on the electrical state of the connections.

2.1.3 Bus parts and RAM and ROM memory management

Now let’s add detail to the microcomputer structure. In our system, the CPU
is the only element that pilots the address bus, which is connected to the
elements present. The identifiers transmitted on the address bus allow the
CPU to fulfill its role as controller and arbiter in the system.

We have just looked at the division of memory space in ROM and RAM. Now
let’s do a careful study of the parts of the bus (addresses, data and controls),
just as we did for the internal structure of the CPU.
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In the following figure, the bus parts (addresses, data and controls) have been
separated out and the memory has been divided into the RAM and ROM sub-
systems. Notice that both receive the addresses generated by the CPU and
are connected to the data bus. Nevertheless, as seen in Chapter 1, the ROM
can only provide it’s contents (i.e. it can only be read by the CPU), whereas
the RAM can do a bidirectional data exchange (read/write). Remember, in
our system the programs we write reside in the ROM while we use the RAM
as a work space.

The control bus makes it possible to manage selection and timing of all the
elements in the microcomputer. For example, when the CPU needs to connect
to the RAM, has to specify if the current operation is write or read, and
indicate the execution times for that task. To do this, the CPU controls two
lines of the control bus: READ and WRITE (not shown in the figure). Further
on, we will examine the timing of these signals and other control lines in
greater detail.

2.1.4 Input/output ports

The previous figure also shows the connection block to the “outside world”,
the Input/Output system. Let’s take another look at the Von Neumann model,
and this time focus on the Input/Output system.
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The Input/Output system can be designed in very different ways according to
the needs of each different application. It is composed of various ports, each
dedicated to every connection to the outside world that we need.

In Chapter 1 we were introduced to ports from a design perspective. We also
wrote simple programs using dedicated IN/OUT instructions. In the DMC8
we find these instructions as well with some difference in how they are used.

We use the term “input port” to refer to a circuit that receive data from
peripheral units outside our system, like a keyboard or a mouse but also de-
vices like position, temperature, pressure or speed sensors. The term “output
port” refers to a circuit that can transfer data from the microcomputer to
an external unit like a graphics card or a printer but also different types of
“actuators” like small displays, motors or relays.

In smaller systems we often find dedicated input ports to simply read push-
buttons and switches, while output ports pilot LEDs. In this section we will
introduce these last examples and focus on reading switches and activating
LEDs. We will deal with design details further on, but for now we will study
these devices only from a functional point of view.

The following figure provides a symbolic representation of the switches at the
left and the LEDs at the right. In reality some analog circuit elements would
be required to connect the switches and the lights to the ports. Here, we have
omitted them so as to concentrate on the logical aspect of the network.

As we can see, the processor reads the eight switches in parallel through the
input port (further on, we will use the instruction IN, which transfers what is
read from the port to accumulator A).
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To choose whether to turn on/off each of the eight LEDs, the processor writes
a byte on the output port in parallel, through an OUT instruction (which
copies the value in the accumulator to the port).

The DMC8 has 8-bit ports because its architecture and data bus have 8 bits.
Also, the DMC8 can address up to 256 output ports and 256 input ports.

Finally, note that even more complex input/output ports can be built upon
the structures we are studying here. These structures are always part of any
project since they are considered to be their fundamental building blocks.

2.1.5 DMC8 connection lines

The figure below gives a detailed view of the connection lines (“pins”) used
to join the DMC8 with the rest of the system. It also briefly describes the
functions of the individual pins. Their specific use will be explained in greater
detail further on in the section on bus timing.

A15 .. A0 (Address bus)

The address bus with 16 output lines transports the addresses for memory
and for Input/Output devices.

D7 .. D0 (Data bus)

The data bus, with 8 bidirectional lines (that use tri-state buffers, see Ap-
pendix A.3) allows for the exchange of information to and from the memory
(data and instructions) and the Input/Output circuits.
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SYNC (Synchronization)

Generated by the DMC8, active low. It signals to the outside that the pro-
cessor is retrieving an instruction from the memory at that moment. All mi-
croprocessors have one and it is generally used for diagnostic purposes. This
signal allows laboratory diagnostic instruments to synchronize with it and
acquire the sequence of all the instructions the microprocessor is executing.

MEMREQ (Memory request)

Generated by the DMC8, active low. When activated, it signals to the memory
devices in the system to prepare because the CPU has set (on the address bus)
the identifier of the memory location that wants to read or write.

IOREQ (Input/output request)

Generated by the DMC8, active low. When it is activated, it signals to the
input/output devices to activate because the CPU has sent (on the address
bus) the identifier of the device that wants to read or write.

READ (Read data command)

Generated by the DMC8, active low. When it is activated, it signals to the
memory (or input/output) devices that the processor wants to read data from
them. It is activated together with signal MEMREQ or IOREQ.

WRITE (Write data command)

Generated by the DMC8, active low. When it is activated, it signals to the
memory (or input/output) devices that the processor wants to write data to
them. It is activated together with signal MEMREQ or IOREQ.

IRQ2, IRQ1, IRQ0 (Interrupt requests)

These are lines received by the DMC8, active low, that order the processor to
temporarily interrupt the execution of the current sequence of instructions in
favor of a new sequence that handles the device that requested the interrupt.

Next we will deal broadly with this topic and the programming techniques
that derive from it. For now, we limit the scope to a brief introduction and
an everyday life example to clarify the subject.

Let’s imagine you are studying for a difficult test. Someone calls you but your
phone is on silent mode so you don’t pick up and you continue studying. If
the ringer is on, however, you put a bookmark on the page you’re studying,
close the book, answer the phone and focus on the conversation. When the
call is over, you open the book to the page you were on and start studying
where you had left off.
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Let’s go through that again, but from the perspective of the processor, which
is executing a program. If it does not want to be interrupted, it ignores any
interrupt request and continues. If it accepts interrupts, when a request comes,
it first saves all the information about what it was working on, interrupts the
execution of the current program.

Then, it launches another program whose purpose is to handle the device
that requested the interrupt. When the tasks that the device requested have
been carried out, the handling program is closed. The interrupt ends and the
processor goes back to the information it had saved and restarts the program
where it had left off, as if there had been no interrupt.

The program can control whether or not to enable the interrupt mechanism.
If the interrupt mechanism is enabled and one or more IRQ2, IRQ1 or IRQ0
lines are activated from the outside, the processor interrupts the sequence of
the program and starts to execute a specific program called the “interrupt
handler”. When an interrupt is requested there are seven different handlers
available depending on which lines are activated: IRQ2, IRQ1 or IRQ0. See
the table below.

IRQ2 IRQ1 IRQ0 Interrupt Handler Address

1 1 1 No request -

1 1 0 Interrupt 1 0008h

1 0 1 Interrupt 2 0010h

1 0 0 Interrupt 3 0018h

0 1 1 Interrupt 4 0020h

0 1 0 Interrupt 5 0028h

0 0 1 Interrupt 6 0030h

0 0 0 Interrupt 7 0038h

If none of the lines is activated, (row 1 in the table) no interrupt is requested.
Otherwise, if even only one of the three lines is activated, the request is sent
and (if interrupts are enabled) the corresponding interrupt handler is exe-
cuted. The table shows the address where the handling program must start,
according to the combination of the values presented to IRQ2, IRQ1 and IRQ0.
After the handler has been executed, the processor goes back to executing the
interrupted program.

The interrupt mechanism is very commonly used in microprocessor systems.
It allows for rapid responses to the devices that request interventions and so
it makes it possible to create the so-called “real-time systems”, i.e. systems
designed to respond to the needs of a plant in a bounded amount of time.
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INTA (Interrupt Acknowledge)

Generated by the DMC8, active low. When it activates, it signals to the
outside that the interrupt request (made by activating at least one of lines
IRQ2, IRQ1 or IRQ0) has been accepted and its interrupt handler is about
to be launched. It deactivates upon that launch.

RESET

This is a signal received by DMC8, active low. Activating this line brings all
the processor’s internal registers to zero, disables the interrupt mechanism
and initializes the sequencer.

CK

This is the clock input that synchronizes all the internal operations.

2.1.6 DMC8 processor programming model

The set of instructions the DMC8 can execute is rather large and that is a sub-
set of that of the Z80-CPU. The instructions will be catalogued systematically
in Chapter 3, from page 211 on.

Furthermore, numerous powerful addressing modes are available. The address-
ing mode is the ability to use various ways to find data to work on, as we have
seen in Sections 1.6.2 and 1.6.7. We will systematically introduce the DMC8’s
addressing modes in Chapter 3 from page 203 on.

For now, we will only point out that the DMC8 belongs, in a very general sense,
to the category of Complex Instruction Set Computers (CISC). As the name
makes clear, a CISC processor has a highly specialized set of instructions. In
contrast to CISCs we have Reduced Instruction Set Computers (RISC)6.

It would be impractical and unhelpful to go into detail on the individual basic
operations carried out within the processor while it executes instructions.

6 The first computers belonged to the CISC category, but initially there was no such
distinction. RISC were introduced later with the goal to make processors with
more orderly and efficient architecture, that were optimized on a limited number
of quickly executable instructions. It is interesting to note that the commercial
battle between RISC and CISC has never produced a real winner. The elegant
architectural improvements of the RISC, were met with “brute force” on the part
of CISC producers. That is, they raised clock frequencies to very high values.
Personal computers are generally based on CISC processors, while tablets and
smartphones have RISC. The industrial world uses both. The processor we de-
signed in Chapter 1 is not developed enough to belong to either category, although
the pipeline structure of the sequencer brings it toward the RISC category.
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Instead, it would be very advantageous to learn to recognize and use the
instructions available, and understand what the effects of executing them
are. The goal is to be able to write programs that can carry out precise tasks
based on functional specifications, and in so doing develop useful programming
techniques.

To reach this objective it is not necessary to have the complete circuit
schematic, so producers usually offer a high-level description of what the pro-
cessor can do and how these operations affect its main components. This type
of description is normally called a “programming model” and usually it’s rep-
resented by a block diagram.

A programming model shows only the main working parts of the architecture
as well as their most important interactions. All the details of the hardware
have been purposely hidden to make it easier to understand the fundamental
mechanisms that govern the microprocessor operations.

The following figure shows the programming model of the calculation elements
and the internal registers of the DMC8. Here we can see a number of registers,
some specialized, others for general use. They will be described one by one in
the following section.

When we use the DMC8 in the D8080 mode, which makes it compatible with
the Intel 8080 microprocessor, the model looks a bit simplified.

It is shown in the following figure. Notice that the only visible difference in
the architectural elements of the D8080 modality is the absence of IX and IY
index registers.
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2.1.7 The internal elements of DMC8 processor architecture

What follows is a brief description of the internal elements of the processor,
with a focus on the programming model figures.

PC Program counter

We saw this register/counter in Chapter 1, where it was smaller. Here, it has
16 bits, allowing it to address 64K memory locations. The PC contains the
address of the next instruction to execute and, as we know, it is automatically
incremented during the program execution. The programming model shows
the internal path that connects the PC to the address bus to make it possible
to retrieve the instruction machine code from the memory.

SP Stack pointer

This register points to the Stack7. We will discuss how this important reg-
ister/counter works in Section 3.4, where we will see it used to execute the
so-called subprograms and to handle interrupts.

Suffice it to say for now that the 16-bit SP register seen in the figures can be
connected to the address bus and that the location at this address is the top
of a RAM memory area called the Stack.

The Stack area is useful to temporarily store information (data or addresses)
that we need to retrieve soon after. As we will see, its functioning is a little

7 The Stack is a data structure where pieces of information are stored one on top
of the other, like a stack of books on a desk. Once stacked, the information can
be retrieved in reverse order from the way it was inserted. This method to store
and retrieve data is called “Last In, First Out” (LIFO).



2.1 The DMC8 microprocessor 129

more complex from the point of view of the hardware involved, however from
the programmer’s perspective, it is relatively easy to use and more impor-
tantly, it brings a lot of advantages.

A Accumulator register

We already worked with this type of register in Chapter 1. In the DMC8, it
functions in the same way and it has 8 bits. The accumulator is a privileged
register because it is involved by default in many of the CPU operations.

We’ve seen that its name has historical roots because, for some types of cal-
culation, it makes it possible to gradually accumulate intermediate results
without having to store them in the memory each time. In our processor, this
is the most important register for data processing.

B register

C register

D register

E register

H register

L register

These are general purpose 8-bit registers for supporting and speeding up data
processing. They store data without having to continually access external
memory, which would take much longer.

BC registers pair

DE registers pair

HL registers pair

Registers B, C, D, E, H and L can be used in pairs as if they were 16-bit
registers. We call the three available pairs BC, DE and HL. Since these coupled
registers are connected to the address bus, they are used in many instructions
to address memory, as we will see in Section 3.2.

Remember that these are still the same registers as before, except that they
are used in pairs. They are not other registers. Here is an example of how they
work together: if we load number B4h in register B and then F3h in register
C, register BC will hold number B4F3h.

F Flags register

We worked with flags in Section 1.4.3. In the DMC8 they are formally grouped
in one single 8-bit register, which actually only uses 6 bits. This register is
often called the “status register” because the flags indicate the status of the
calculation system after an arithmetic or logical operation.
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We introduced only two types of flag in the processor studied in Chapter 1,
one to signal if the last add or subtract in the ALU has generated a carry
(or a borrow) and the other to signal that the result of the ALU is zero. The
DMC8 has four more. Below, we have the flag positions in register F and an
explanation of each follows.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

S Z – H – P/V N C

C Carry flag

The carry flag stores the carry from the most significant bit generated by the
ALU (for an add), or the borrow (for a subtract) (C=1 signals that there is a
carry or a borrow, C=0 if there isn’t). This is also used in shift operations.

Z Zero flag

The zero flag signals if the ALU result is zero after a logical or arithmetic
operation (Z=1 signals that all the bits of the result are at zero, Z=0 signals
that at least one of them isn’t). Further on, we will see that whole classes of
instructions, like those that transfer data have no effect on this flag.

S Sign flag

The sign flag has the same value as the most significant bit generated by the
ALU (in fact, in 2’s complement arithmetic, S=0 signals if the result of an
operation is positive and S=1 if it is negative).

P/V Parity/overflow flag

This flag, referred to as either (P or V) carries out two different functionalities
depending on what operation has been performed. For an arithmetic two’s
complement operation it signals if there has been overflow; while for logical
operations it signals if the number of ‘1s’ in the result is even. In D8080 mode,
the overflow isn’t evaluated and this flag is referred to only as P (parity).

H Half-carry flag

H is significant only for BCD arithmetic instructions. It signals if there is a
carry from the 4 least significant to the 4 most significant bits in the accumu-
lator. In D8080 mode this flag is referred to as AC.

N Subtract flag

The subtract flag signals if the last operation executed was a subtract (N=1)
or not (N=0). In D8080 mode, this flag does not exist.



2.1 The DMC8 microprocessor 131

IX Index register ‘X’

IY Index register ‘Y’

Index registers IX and IY are 16-bit registers made for specialized use as
indexes to address memory and to facilitate access to some data structures.
They will be examined in Section 3.2, in relation to addressing modes. These
registers are not included in the D8080 mode.

IFF Interrupt flip-flop

Finally, the DMC8 also has another flip-flop, which is not included in the flags
register F. Flip-flop IFF enables or disables the interrupts mechanism outlined
before. In IFF = 0, interrupts are disabled. Flip-flop IFF is associated to the
interrupt logic that receives the three request lines IRQ2, IRQ1 and IRQ0.
The logic evaluates the requests and if IFF=‘1’, the processor is interrupted
and the interrupt handler is launched, as seen in Section 2.1.5.

2.1.8 The sequencer and instruction execution

As we saw in Chapter 1, in terms of the internal operation, a microprocessor is
a digital system controlled by a sequencer that finds and executes instructions.
After the Reset is activated, the sequencer goes into an infinite loop of states
that includes the instructions Fetch, Decode and Execute.

As outlined before, unlike the processor designed in Chapter 1, here we have no
instruction pipeline, i.e. the three operations do not overlap but are executed
one after the other, as shown in the following figure.

When the system is turned on, there is nothing significant in the RAM since
it is a volatile memory, which keeps its contents only when it is powered as it
is composed of flip-flops. For these reasons, when a microprocessor system is
turned on it has to look to the ROM where it finds the program that will be
executed.

Reset brings the PC of the DMC8 to zero and this means the first instruction
is found at address 0000h. We’ll call this the “reset address”; it is where all
our programs begin from8.

8 Remember that other types of microprocessors can require Reset addresses other
than zero.
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2.1.9 An initial example of programming

In Chapter 1 we saw that programs from a hardware perspective are nothing
other than sequences of binary codes stored in memory that the microproces-
sor can fetch, recognize and execute one by one. A program, as a sequence of
executable binary code, is also called machine code or “object code”.

As demonstrated in Chapter 1, programming in machine code is particularly
inconvenient. We know that we can avoid treating each operation in numeric
form and instead, use the easier and more memorable mnemonic code to write
programs. In fact, ever since the first computers were produced, Assembly
language has been provided. It allows programmers to write in mnemonic
code and has a 1:1 ratio between lines of code the programmer writes textually
(each with one instruction) and the corresponding machine code.

Each type of processor has its own machine code and Assembly language. The
DMC8 has its own, which is a subset of that of the Z8-CPU. In D8080 mode,
the DMC8 can be programmed by using the Intel 8080’s Assembly language
since the Z80-CPU is compatible with the 8080 at the machine code level. So it
is possible to write the same exact program using the two different languages
interchangeably9.

In Chapter 1, the mnemonic codes used to program our processor were chosen
because they were as similar as possible to DMC8 codes. The small example
of a DMC8 program below uses codes that are very similar to those we have
seen before. The following figure shows it written in the text editor of the
Deeds-McE microcomputer emulator. We will discuss this tool in detail in
Section 2.4 at the end of this chapter.

In the first line, as described in the comment after the semicolon10, we load
constant 34h in register A. In the second line, we add register A to itself,
thus doubling its content. In the next line, the content of A is saved in the
memory, at the 16-bit address location specified in parentheses. The program
continues, but here, we will only consider the first three instructions.

After assembling the program (see Section 2.4), we have the machine code
loaded into the emulated memory, ready to execute.

9 However, in this book, we do not use D8080 mode.
10 A semicolon indicates that a comment has been inserted from that point to the

end of the line. We can also use semicolons to draw separators and frames, which
are useful in making the program more readable.



2.1 The DMC8 microprocessor 133

The figure below is a sample from the emulator.

As we see in the figure, the emulator carries both the mnemonic codes, as
written in the editor (on the right), and the program machine codes trans-
lated by the assembler (on the left). For practice, use what you’ve learned in
Chapter 1 and try to interpret intuitively the machine codes allocated in the
memory and made visible by the emulator.

The first column on the left shows the location addresses where the micro-
processor finds the instruction machine code, while the machine code itself is
carried over to the second column11. From column three on, the instructions
written by the programmer are reported, allowing us to see the correspondence
with the machine codes.

Concentrating on the first two columns, we see that the assembler has allo-
cated the first instruction to address 0000h by default. This address is the
ROM location the program will start executing from at Reset.

At address 0000h in column two, we find machine code 3Eh, which is the
translation of instruction “LD A,<const>”, and next to it is constant 34h,
the operand of the instruction. They are represented without spaces because
the emulator compacts them. Obviously we understand that constant 34h is
at address location 0001h, after the instruction machine code.

At location 0002h we find number 87h, the translation of “ADD A,A”.

Byte 32h is allocated at address 0003h, in row three. It is the machine code of
the instruction “LD (<address>),A”, followed by operand bytes 5Fh and 9Ah,
at addresses 0004h and 0005h respectively. They represent the least significant
byte (“the low part”) and the most significant byte (“the high part”) of the
16-bit address in parentheses.

To our eyes, the two bytes appear inverted but in reality, their order was
dictated by a precise arrangement, the “little endian”12.

11 The addresses and machine codes are in hexadecimal format even though this is
not expressly marked with an ‘h’.

12 When a 16-bit number is stored in the DMC8, the low part is always allocated
first (at the lowest address) followed by the high part (the next address). In this
way, the system respects “little endian” order. In other systems that save the
most significant byte first, the order is called “big endian”.
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2.1.10 An example of instruction execution

Imagine you are starting to execute the program considered here through a
reset. The processor fetches the machine code of the first instruction (3Eh)
at ROM location 0000h and copies it to the instruction register (see Sec-
tion 2.1.1), as shown in the figure below.

Now, the number in the instruction register is decoded and the sequencer
starts with the corresponding flow of internal operations.

The machine code is followed by constant 34h. Meanwhile the PC has been
incremented and now points to that constant, which is then loaded in register
A (see the figure below).

The execution of the instruction took 7 clock cycles (4 to fetch and decode
the machine code, and 3 to read the constant)13.

13 In Section 2.2 we will study memory access timing in detail.
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Meanwhile, the PC has been incremented again and is now pointing to 0002h,
where the second machine code (87h) is fetched.

After executing the ADD A,A that was requested, the processor saves the
result by overwriting register A, which will be 68h. See the figure below. This
instruction was executed in 4 clock cycles.

The third machine code is 32h, allocated at address 0003h. Note that the
address specified as the instruction operand was placed by the assembler right
after the machine code. This 16-bit number is divided into two bytes, with
the least significant part (5Fh) preceding the most significant part (9Ah).

Executing this instruction takes 13 clock cycles and is quite complex. The
first 4 cycles are spent fetching and decoding the instruction machine code
(see the figure below).

The sequencer increments the PC to access the byte that follows the machine
code. Three more clock cycles are used to read the least significant bit of the
address (5Fh). The following three clock cycles are used to read the most
significant bit (9Ah), after raising the PC by one increment again.
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As we can see in the following figure, the two bytes are recombined in a internal
temporary register (not mentioned in the programming model).

Only at this point does the processor finally have the complete address to
do the requested write in the memory. In the last 3 clock cycles, it writes in
memory the value taken from the accumulator, using the recombined address
9A5Fh. See the figure below.

Notice that the address bus is not connected to the PC for this event as in the
other operations, but rather to the temporary register. The processor accesses
the RAM with this address to write the value in the selected location.

Meanwhile the PC has been incremented to 0006h, and will be used to fetch
the next instruction machine code (not shown here), continuing with the pro-
gram execution.
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2.2 Bus signals and timing

In Section 2.1 we analyzed the functional relationship among the various el-
ements of the system that are organized around the bus and we looked at
an example of instruction execution. In this section we examine the signals
involved and their timing in greater detail. Then we will design the memory
sub-system and the input/output ports.

2.2.1 The clock, synchronization and initialization of the system

Every part of the system is synchronous so before we discuss signal timing
we should review some basic concepts. We have seen that the microprocessor
needs a clock signal to synchronize all its internal operations so the system
must have a “Clock Generator” with the right frequency. See the figure.

The symbol at the upper left represents a quartz crystal, which is used to
stabilize the frequency of the signal14. Let’s consider that in our system, the
generator’s frequency15 is set at 10MHz, with a 50% duty cycle. Obviously,
the clock is connected to the CPU but it is also available to the control bus
so that it can be used by all the devices in the system that may need it.

The following figure shows another generator, which is necessary for initializ-
ing the system, the “Reset Generator”.

14 Quartz crystals are often used in clock generators because of their piezo-electric
properties. If this type of crystal is cut into the right size and covered in two
layers of conductive plate, it can vibrate at a precise frequency. The vibration
is harmonic, similar to that of a tuning fork but its frequency is in the tens
of megahertz. Due to its piezo-electric properties and the layers of conductive
plate, it produces an electric signal with a time behavior analog to that of the
mechanical vibration. A suitable electric circuit amplifies this signal and feeds the
mechanical vibration in order to sustain it. Then, the sinusoidal signal is reduced
to two levels (high/low) and produced at the output of the generator.

15 Note that it is not necessary for the clock frequency to always be as high as
possible in any system. Here, the chosen frequency is suitable for a medium-
performance control system. The frequency might also be quite low, for example,
when we need to save energy as with a home thermostat, which needs a clock at
a low frequency to guarantee a long life of the battery.
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When the system is turned on, it sends the Reset signal to the CPU and,
through the control bus, to the whole system. Its job is to correctly initialize
all the sequential elements in the system when it is turned on. The Reset line
is activated for the duration of a tenth of a millisecond16.

This generator can have a push button that makes it possible to reset the sys-
tem manually. This may be accessible to the user like on a desktop computer,
or accessible to specialized maintenance service only, as on smartphones.

2.2.2 The physical behavior of the bus

The bus transfers information from one module to another in the system.
Normally when we think of a signal generated by one logic gate and received
by another we don’t think about the physical actions that propel the signal
along the physical connection between the two gates. This is because we take
for granted that the distance is short; think of the connection between two
physically adjacent logic gates on the surface of a silicon chip, at a distance
of a fraction of a µm.

Still, in a digital system with a bus and connections between separate cards we
have longer connections from a few to tens of centimeters. The real physical
behavior of a bus and of long connections can be less straightforward than
we may think. The following figure shows a generic element ‘A’ that sends an
address on the bus, which is received by ‘B’.

16 The circuit is designed to activate the Reset signal as soon as the power is on
in order to initially freeze all of the devices present during the system’s power-
up stage. As soon as the supply voltages have reached the nominal value, the
generator releases the Reset line, allowing the system to activate.
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In a vacuum the propagation time of an electromagnetic wave is at the speed of
light: about 3.3 nS per meter. In a propagation medium, the speed is reduced
as a function of the physical and geometric properties of the medium itself.

Signals that travel between logical devices can reach propagation times of
the order of 20nS per meter, which is comparable to the times of the devices
themselves. These non-negligible propagation times highlight other issues like
signal reflections in a long connection17.

Other physical parameters are in play such as parasitic inductance and ca-
pacitance, or the mutual electromagnetic coupling between wires, etc. In the
previous figure we show a signal that is delayed in time and distorted in shape
when it travels from ‘A’ to ‘B’.

Basically, the immediate effect of this is that the particular electrical and
geometric characteristics of a bus will limit how fast it can transfer data.
Designers must be aware of this.

2.2.3 Clock cycles, machine cycles and instruction cycles

Aside from the physical limitations of the bus, we must keep in mind the
time constraints imposed by the devices involved. The processor, memory
and input devices have to communicate with each other, which means that
the time characteristics of all the elements have to be compatible. Bus signal
timing is normally defined by processor timing. The designer must adapt the
other devices’ behavior to the processor timing.

The DMC8’s bus timing is simple to determine since it can be broken down
into a very small number of standard sequences called “machine cycles”. Mul-
tiple machine cycles combined together determine the processor’s bus timing
during the execution of instructions (the “instruction cycles”). Among the
standard sequences we can see at the processor pins, we find the following
machine cycles:

— Instruction fetch cycle
— Read-write memory access cycle
— Input/output access cycle (read in input, write in output)
— Interrupt acknowledge cycle

17 If we vary the tension at the output of a logic gate, this variation is propagated
as a wave edge with a finite propagation time along the connection toward the
logic gate on the other end. When the variation gets to the destination, we have
a bounce, due to the receiving device not completely absorbing the energy of the
signal. Some of the signal goes backward toward the gate that had generated it.
At that point, there will be another bounce forward and so on until the energy of
the signal is exhausted. All these unwanted signals overlap. This can bring about
serious distortions in the signals themselves and slow down the system. There
are technical solutions that can mitigate these effects (which we will not examine
here).
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In Section 2.1.10, we examined the execution of instruction LD (9A5Fh),A
in detail. When we look at the bus, we can see that this instruction can be
broken down into a succession of four standard machine cycles:

— A fetch cycle (reading its opcode)
— Two memory access cycles (reading the two bytes of the operand)
— Another memory access cycle (writing the number in the memory)

In the following we examine the timing of the main machine cycles and leave
that of the interrupt to Chapter 4.

2.2.4 The fetch cycle

The memory retrieval sequence of the first instruction byte, the opcode, is
standard for all instructions. See the figure below.

The fetch cycle takes a total of four clock cycles: in the first three cycles, the
microprocessor reads the opcode while the fourth cycle is for decoding and
starting execution.

With the rising edge of clock cycle C1, the processor sends the content of the
Program Counter on the (A15..A0) address bus. On the falling edge of the
same cycle, the memory request line (MEMREQ) and read line (READ) are
activated. In response to these two signals, the memory is active and once the
access time is over, puts the content of the addressed location (the instruction
code) on the D7..D0 data bus.

Notice that the data bus is normally in the high impedance (Hi-Z) state,
except when one of the devices activates (as in this case with the memory).
The memory and the data bus deactivate after lines MEMREQ and READ
go back to a resting state.

The microprocessor captures the instruction code and loads it in the Instruc-
tion Register on the falling edge of clock cycle C3. As of this edge, the in-
struction opcode starts being decoded in the processor and as of cycle C4 the
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sequencer starts executing it. Whatever the type of instruction, on the rising
edge of the next cycle C1, the processor increments the Program Counter to
set it up for the next retrieval.

For most instructions that only request access to internal registers, the exe-
cution of the instruction ends with the rising edge at the end of C4 and the
beginning of C1. Let’s consider the example of instruction LD A,B. Executing
this instruction doesn’t require memory access cycles because it involves only
resources that are internal to the microprocessor18. Therefore, on the edge
between C4 and C1, the processor directly begins fetching a new instruction.

If the instruction requires external access, as with instruction LD (9A5Fh),A
(the previous example), one or more memory access machine cycles will follow
the end of clock cycle C4.

During clock cycles C1, C2 and C3 the processor activates line SYNC, to
indicate that the processor is executing a fetch cycle. SYNC is a signal of
synchronization that shows what the processor is doing from the outside19,
and is active only during the fetch sequence.

2.2.5 Read/write memory access cycles

These memory access cycles consist of three clock cycles each. In both the
read and the write cases, the address location the processor wants to read or
write is placed on the (A15..A0) address bus at the beginning of cycle C1.
That address remains valid until the end of cycle C3.

18 As a matter of interest, for internal architectural reasons, the content of B is not
copied into A by the end of clock cycle C4, as one would expect. Rather, it is
executed soon after, during the fetch cycle of the next instruction.

19 SYNC is normally used only by diagnostic instruments, as for example the “Logic
State Analysers”. When they are connected to the microprocessor, they allow us
to track programs in execution in real time.
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The time sequence of the read memory cycle (see the figure above) is very
similar to that of the fetch cycle we have just examined. In this case, however,
the data address can come from any of the 16-bit registers (HL, BC, DE, IX,
IY), not only from the Program Counter. The byte that is read is copied in a
CPU register.

In the write memory cycle (see the figure below) line WRITE is activated on
the falling edge of C2, one cycle after MEMREQ is activated.

Line WRITE is then released together with MEMREQ on the falling edge of
C3. This is the edge that stores data into the memory.

The reason to start the WRITE signal later is because we need to allow time
for older types of RAM to complete the operation of selecting the addressed
location before moving on to the actual writing. More recent memory devices
don’t have this problem. Notice that the processor sets the byte to write on
the data bus rather early and keeps it there until the end of clock cycle C3.

Referring back to the example of instruction LD (9A5Fh),A, the complete
time sequence is shown in the following figure. The sequence has been divided
into two parts for reasons of space. It is made up of one fetch cycle (M1), two
read memory cycles (M2, M3) and one write memory cycle (M4).

We suggest that you compare this time sequence with the description of the
execution of the instruction in Section 2.1.10.
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2.2.6 Input/output access cycles

Input and output access cycles last for four clock cycles each. They are gener-
ated by the processor during the execution of IN and OUT instructions. The
following figure shows the input cycle.
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At the beginning of clock cycle C1 the identifier of the input port that the
processor wants to communicate with is put on the low part A7..A0 of the
address bus. It remains there until the end of cycle C4. With 8 address wires,
we can differentiate up to 256 input ports.

The port’s address is normally specified as an operand of the instruction IN,
but there is also a variant of this instruction that retrieves it from register C,
as we will see.

With the falling edge of cycle C1, line IOREQ (request to activate input/out-
put devices) is activated. It will then be deactivated on the falling edge of
cycle C4. While an instruction IN is being executed, line READ requests the
selected input device to activate and provide the input data to the bus. The
processor acquires the data on the falling edge of C4.

As for an access sequence to an output port, when instruction OUT is ex-
ecuted, the dynamic of lines A7..A0 and IOREQ is very similar to that of
instruction IN. See the figure below.
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In this case, line WRITE is activated. The processor uses it to order the
output device to acquire the data the processor has in the meantime put on
the bus. This occurs as of the falling edge of C1 and is maintained until the
end of C4. The device typically acquires the number on the rising edge of the
clock C4 or on the rising edge of line WRITE.

Now let’s consider a timing diagram example that shows an instruction OUT
that copies register A to an output port.
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Below, an excerpt from the program that generates this timing sequence dur-
ing the execution of the OUT instruction.

It loads constant 34h in register A and then copies its content to the port at
address 25h. After assembling the program, the machine code related to these
two source lines appears like this in the emulator:

The timing diagram shows a sequence of 3 memory cycles (M1, M2 and M3).
Let’s compare what we see there with the row highlighted in the emulator. In
M1, the processor fetches its machine code (D3h). In read memory cycle M2,
operand 25h is acquired (the port address). Finally, in output cycle M3 the
processor sends the data (34h) onto the data bus, writing it to output port
at address 25h.

2.2.7 Inactive cycles

In the case of some instructions besides the machine cycles we have examined
so far, we can also observe some seemingly inactive clock cycles.

In actual fact, it is only the bus that is
inactive during these cycles, while the
processor continues working internally.
In this inactive cycle, the value on the
address bus is irrelevant, all the control
signals are inactive and the data bus is
in Hi-Z (see the figure on the right).

Let’s take the example of instruction
INC HL, which increments the content
of the 16-bit HL register by one.

After the four clock cycles of the fetch,
it takes two more clock cycles for the
instruction to be completely executed
internally, while the bus is externally
inactive.
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2.3 Input/output and memory subsystems

We have seen that the processor addresses the memory with 16 wires (A15..A0),
so it can select up to 216 locations (one byte each). We have also seen that
this space can be completely or partially utilized and that we have both ROM
and RAM memory.

To describe the memory in a microprocessor system from the perspective of
a programmer, we have used the so-called memory map. The input/output
ports are addressed with only 8 lines (A7..A0) and those that are available in
the system are included in the port map.

In this section, we will take the perspective of a hardware designer and exam-
ine how to design input/output and memory subsystems for our system based
on what we have seen so far.

2.3.1 Memory subsystems

As we saw with time sequences, the processor controls access to the memory
through the MEMREQ, READ and WRITE connections. Line MEMREQ is
activated by the microprocessor to signal the beginning of a memory access
cycle (and line IOREQ is activated in I/O cycles).

So to design the memory system we need to remember that it has to activate in
response to line MEMREQ and obviously, we need to take READ and WRITE
into account to distinguish between read and write. We must also connect the
address bus to select the individual cell addressed by the processor inside the
memory devices.

A memory system can generally be composed of multiple memory components
(both RAM and ROM). We use the address provided by the processor for two
combined purposes:

— to activate one single memory chip (that contains the addressed location)
at a time

— to select the desired location inside the activated chip.

In our system, there is a total of 64 kB of address space. Within this limit, we
can decide the size of the ROM and RAM areas according to need. We must
also allocate these areas among the individual memory devices that we want
to use. Let’s imagine we only have 4-kbyte memory devices and we want to
allocate a total of 8 kB of ROM and 8 kB of RAM.

Our system’s memory map will look like the one below, where the ROM is
allocated as of location zero and the RAM at the bottom of the available
space. The remaining space for memory is available for further expansions.
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Remember that when the system is reset, the first instruction has to be at
address zero in ROM. If it were otherwise, the processor would begin reading
memory locations that haven’t been initialized yet, trying to interpret them
as instructions, which would certainly make the system malfunction.

In the figure on the right we see two
4-kbyte memory components (ROM and
RAM) that are available in the Deeds sim-
ulator library.

They both have 12 address wires
(A11..A0) and 8 data lines (A7..A0).
Input line CS (Chip Select) activates
their functions.

In the ROM, when line OE (Output En-
able) is activated, it enables the tri-state
buffers of the output data lines. The RAM
component we have chosen uses bidirec-
tional data lines (see Appendix A.3).

This is a synchronous RAM in the sense that read/write operations correspond
with the rising edge of the clock CK.

Writing is enabled by input WE (Write Enable). To write a number in the
memory, we must bring it to the data lines, activate WE = 1 and wait for the
rising edge of the clock.
The read function is enabled only when write is inactive (WE = 0). When this
condition is met, line OE (just as in the ROM) enables the output tri-state
buffers, making it possible to read the addressed number.

Now let’s go back to the memory map and look in greater detail at binary
addresses. See the figure below. As we can see, the configuration of the four
most significant bits of the addresses (A15..A12) decidedly determines which
of the 4-kbyte memory devices should be selected.
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Hex A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Comment

0000h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0001h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . 4-kbyte

↓ . . . . ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ROM

. . . . . . . . . . . . . . . . .

0FFEh 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

0FFFh 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1000h 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1001h 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . 4-kbyte

↓ . . . . ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ROM

. . . . . . . . . . . . . . . . .

1FFEh 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

1FFFh 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2000h 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . Free

. . . . . . . . . . . . . . . . . Space

DFFFh 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

E000h 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E001h 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . 4-kbyte

↓ . . . . ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ RAM

. . . . . . . . . . . . . . . . .

EFFEh 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0

EFFFh 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

F000h 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

F001h 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

. . . . . . . . . . . . . . . . . 4-kbyte

↓ . . . . ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ RAM

. . . . . . . . . . . . . . . . .

FFFEh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

FFFFh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

When we analyze the map we see that if A15..A12 = ‘0000’, the first of the
two ROMs, the one that will contain the first four kbytes, should be selected
from address 0000h to 0FFFh. If A15..A12 = ‘0001’, the second of the two
ROMs, the one that will respond to addresses 1000h and 1FFFh, should be
activated.
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The remaining 12 lines (A11..A0) are connected directly to the device wires
of the same name so as to address locations on the inside. The following figure
shows the ROM memory sub-system, which fulfills our considerations about
addresses.

As we can see, the address wires (A15..A0) are split into two sections. Lines
A11..A0 are directly connected to the corresponding address lines for the two
memory components, while lines A15..A12 are used by a small decode network
that activates the CS inputs as described in the table. Namely, A15..A12 =
‘0000’ for the ROM at the left of the figure and A15..A12 = ‘0001’ for the one
on the right.

The decode network also takes line MEMREQ into account, which has to be
at ‘0’ so that the memory activates.
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Therefore the CS time trends, except for propagation delays, correspond to
that of the processor’s MEMREQ signal. The processor’s READ command is
used to drive both OE enable lines of the tri-states on the output lines.

The RAM sub-system network shown below is very similar to the previous
one, especially in the way the addresses are connected.
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Clearly, the decode network of the address is different; it is set to activate the
component on the left for A15..A12 = ‘1111’, and the one on the right for
A15..A12 = ‘1110’ (consistent with the memory map).

The READ command for the RAMs is generated by the processor and used
to activate the tri-states of the output lines by means of the OE enable lines.
Similarly, line WRITE is connected to write commands WE of both RAMS.
Needless to say, these commands work only on the device selected at a given
moment.

2.3.2 The Input/Output subsystem

For simplicity’s sake, let’s consider only 8-bit parallel input/output ports.
Initially we will use them to read the state of push-buttons and/or switches,
and to turn lights on and off. In any case, let’s remember that more complex
input/output ports rely on basic concepts that we will examine now. The
basic structure of parallel ports is the foundation of any input/output system
design, however complex. We will encounter more complex input/output ports
in the follow-up to this book.

We previously examined the timing of IN/OUT instructions (Section 2.2.6).
The processor controls access to the input and output ports through lines
IOREQ, READ and WRITE. Signal IOREQ is activated at the beginning of
an input/output access cycle. READ is activated so that an input port can
be read, while WRITE is activated so that something can be written on an
output port.

If we compare the time trends of the signals we see that there are no substan-
tial differences between the memory access cycles and the input/output access
cycles. The only important difference is that signal IOREQ is activated, rather
than MEMREQ; otherwise the time trends of the signals are very similar. In
addition to the control signals, the bus lines involved in the project are data
bus wires D7..D0 and address bus wires A7..A0.

2.3.2.1 Parallel output ports

If we go back to the output port access cycle from Section 2.2.6, we notice
that the processor produces the data to write on the falling edge of clock cycle
C1, and keeps it until the end of clock cycle C4. Let’s connect an 8-bit parallel
register to the data bus in order to capture the data. See the following figure.
This involves activating write enable E when the data are available on the bus
while instruction OUT is being executed.
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From the timing diagram we see that signal WRITE performs well as an
enable signal, given its time trend. When WRITE is active, the data to write
is on the bus and can be captured by the register on the rising edge of clock
C4. Since this is a register, once the number is written, it remains available
on the outputs until the next time it is rewritten.

Line WRITE is not enough on its own; we need to add a condition on IOREQ,
(which must remain active) and on wires A7..A0, so that the write only hap-
pens on the port identified by the address the processor generated.

This means we need to add some logic gates and an address recognition circuit,
which compares the address sent by the processor to a locally set constant.
The following figure shows a possible version of the parallel output port where
we use a magnitude comparator to recognize the address.
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The figure shows eight dip-switches that allow us to define the address assigned
on the port. They are shown for the general purposes of explanation but they
actually can be substituted by simple constants established at design time20.

In the schematic, address bus lines A7..A0 are compared to the port address,
which is set at 25h (‘00100101’) in this example. So, the comparator output
is placed in AND with processor signals IOREQ and WRITE.

The enable is then brought to the output under the name wS (“Write Strobe”,
active low). wS signals to the outside that a byte has been written on the port
and is available on output lines OL7..OL0.

So, enable E copies the time trend of WRITE but only if IOREQ = 0 and
the address bus has the correct address, as shown in the timing simulation
reported in the figure below.

When instruction OUT (25h),A is executed, the processor puts number 25h
on the address bus so our hardware recognizes that address and generates E
with the time trend seen in the figure. In the simulation, the number provided
to the bus (D7..D0) is set at 34h, as in the example in Section 2.2.6.

On the rising edge of clock 4, the number on the data bus is loaded in the
register, so it exits lines OL7..OL0.

20 There are “plug-and-play” systems that make it possible to reprogram addresses.
To achieve this, the address of the port is set by another register, which is itself
writable by the processor, but this is outside the scope of this book.
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2.3.2.2 Parallel input ports

If we look at the input access cycle (Section 2.2.6), we see that the processor
expects to capture the data on the bus (that comes from the port) on the
rising edge of clock CK. This occurs after activating lines IOREQ and READ
in the time interval between the falling edge of C1 and that of C4.

To make sure the input port’s data can be delivered to the data bus, we must
use tri-state buffers (see Appendix A.3), which can connect the data lines to
read to the bus during the right time interval.

On the left side of the figure below, we see the eight tri-state buffers that we
need to connect each data bus line (D7..D0) to the corresponding input line
(IN7..IN0). The eight tri-state enable lines are all connected together to one
line E.

On the right side of the figure we see the network that we will use in the
following. It is functionally identical in that the eight buffers, for convenience’s
sake, are enclosed in one component controlled by enable E.

Note that the simplest input ports do not even need to use a register (we will
introduce registers further on in more complex examples). Here it is enough
to assume that any element that provides data to the input port on lines
IN7..IN0 keeps that data stable for the time it takes for them to be acquired
by the processor.

Enable E needs to be given by a proper decoding circuit and address recog-
nition mechanism like those used for the output port.

On the machine cycle’s timing diagram (Section 2.2.6), the timing of signals
IOREQ and READ suggests using these lines to condition the enable of the
buffer. This way, the data provided to the bus from the outside will be available
on the rising edge of the clock C4, as required by the processor.

Clearly, we should not forget to condition E to the address the processor
brought to wires A7..A0, as in the output port.
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The schematic in the figure below reflects this.

Address bus wires A7..A0 are compared to the address of the port. They are
programmable with eight switches. In our example, the port address is set to
‘10000011’ (83h). As we saw with the output port, in a real project they could
be replaced by constants unless we wish to keep manually changing the port
address.

An AND conditions the comparator output by the activation of lines IOREQ
and READ. Enable E is also carried to the output as rS (Read Strobe, active
low), so that the outside is informed about the instant when the input data
on IN7..IN0 is read.

Let’s look at an example, simulating the execution of instruction IN (83h),A.
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The processor has placed number 83h on the address bus and now expects to
acquire the number from the input port on edge 4 of the clock. See the figure.

Number ‘00110110’ = 36h is on input lines IN7..IN0 and we imagine it is kept
stable by the outside element that provided it. As we can see, the tri-state
buffers enabled by E force this number on the data bus. The number remains
available on the bus until the falling edge of cycle 4.

The diagram does not show this explicitly but we can trust that the processor
acquires the number on the bus (36h) and stores it in accumulator A on rising
edge 4 (indicated by the arrow).
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2.3.2.3 Specificities of output ports

An output port can be written but if its network is like the one examined here,
it won’t be able to be read simply because the hardware to do it is lacking.
To read an output port, unlike a memory location, it must be supported by
an input port and connected so that its lines can be read.

Usually we do not use hardware for reading for reasons of economy. The most
economically advantageous solution would be to keep a software copy in the
RAM of the software needed to remember the set of zeroes and ones produced
in the output port.

2.3.2.4 The I/O Map

It is common practice to represent a map of the input/output devices in the
system, similarly to what we did for memory. As an example, a simple system
with only parallel ports would fit the description given in the I/O map below.

HEX A7 A6 A5 A4 A3 A2 A1 A0 Ports (description example)

00h 0 0 0 0 0 0 0 0 Input - 8 Light Sensors

01h 0 0 0 0 0 0 0 1 Input - 8 Switches

02h 0 0 0 0 0 0 1 0 Input - 8 Switches

03h 0 0 0 0 0 0 1 1 Input - 8 push-buttons

04h 0 0 0 0 0 1 0 0 Input - Generic 8 lines (A)

05h 0 0 0 0 0 1 0 1 Input - Generic 8 lines (B)

. . . ...

. . . ...

63h 0 1 1 0 0 0 1 1 Input - 8 Switches

63h 0 1 1 0 0 0 1 1 Output - 8 LEDs

. . . ...

. . . ...

FAh 1 1 1 1 1 0 1 0 Output - Generic 8 lines (A)

FBh 1 1 1 1 1 0 1 1 Output - Generic 8 lines (B)

FCh 1 1 1 1 1 1 0 0 Output - 7-segment display (low)

FDh 1 1 1 1 1 1 0 1 Output - 7-segment display (high)

FEh 1 1 1 1 1 1 1 0 Output - 8 LEDs

FFh 1 1 1 1 1 1 1 0 Output - 8 LEDs

Note that at address 63h there are both an input port and an output port.
The two devices can never be in conflict since they are activated in a mutually
exclusive way: one in write and the other in read (signals READ and WRITE
never activate together).
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2.3.2.5 Port address spaces

There are two different schools of thought about the way to connect the pro-
cessor to input and output devices. The difference is in addressing ports, which
could be done by a separate port address space, as we saw in the DMC8. Al-
ternatively, it could be done by sharing a single address space where both
memory and input/output devices are allocated.

The first type is traditionally called “I/O standard”. It has two separate
control signals MEMREQ for the memory and IOREQ for the ports. The two
address spaces are completely separate and the memory access instructions
(ex. LD (2035h),A) and port access instructions (IN and OUT) are different,
as we have seen. This method is also used in Intel processors for example.

The second type is called “I/O Memory Mapped” and is used in Motorola’s
68000 series and their descendants, as well as in ARM (Advanced Risc Ma-
chine) processors, for example.

The microprocessors that use this method don’t have specialized input/output
instructions because in terms of hardware, the processor doesn’t distinguish
between memory devices and input/output devices. The one address space is
used both for memory chips and for ports and the distinction between the
two comes only with the address. The same instructions used for memory are
used to write and read ports.

In terms of programming, this is considered an advantage in certain respects
since it makes it possible to apply the power of the instructions used for mem-
ory to the ports. There is, however, also a disadvantage; the lack of specialized
input/output instructions makes the assembly code much less readable.
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2.4 Introduction to Deeds-McE

As explained in the foreword, the Deeds environment includes three software
modules. The most important among them is the Deeds-DcS (Digital Circuit
Simulator), which has been used in this book to build and simulate all the
digital networks presented here, for example those in Chapter 1. The environ-
ment also has the Deeds-FsM (Finite State Machine Simulator), which was
also used at the beginning of Chapter 1, on page 1.2.1.3.

An example of the third module is the Deeds-McE (Microcomputer Emulator),
that we looked at briefly in Section 2.1.9 of this chapter. In this section we will
begin to deal with the Deeds-McE, Microcomputer Emulator’s main features,
which will be treated in greater detail throughout the rest of this book.

2.4.1 The microcomputer components of the Deeds-DcS

The Deeds-DcS library has two components: the “DMC8 Microcomputer” and
the “DMC8 Enhanced Microcomputer”.

2.4.1.1 The “DMC8 Microcomputer”

This is the basic microcomputer. It has a CPU, configurable ROM and RAM
from 1 to 32 kB, as well as 4 parallel input ports and 4 parallel output ports
available. See the figure below.
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It has only one interrupt request input (Int). Inside it includes one clock (10
MHz) and a reset generator for rebooting.

The example in the figure has a component working on a generic application
(that is beside the scope of this introduction). The schematic shows the con-
nections among some of the input and output lines and a “timer” component
connected to line Int.

Further on, we will analyze how this component works, in a discussion on
interrupt techniques. For now, it is important only to know that the timer
makes it possible to send an interrupt request to the CPU at regular time
intervals with a period that we set in the design phase.

In the figure, the component has 4 input ports (IA, IB, IC and ID) at the
upper left and 4 output ports (OA, OB, OC, OD) at the lower right, for a
total of 32 input lines and as many output lines. Each port makes a signal
line available (rA, rB, rC, rD for read and wA, wB, wC, wD for write). For a
description of how they work, see Sections 2.3.2.1 and 2.3.2.2.

On the left, we see external input Reset and interrupt request input Int. At
the upper right, we have output Sync, retrieved directly from the processor,
while at the lower right we have interrupt acknowledge output IntA, the clock
output CkOut and the reset generator output RsOut.

At the center of the figure, from higher to lower, we have the instruction being
executed (during the simulation), the selected CPU (DMC8 or D8080), the
ROM and RAM with their respective capacities and finally the name of the
project loaded in the component. The small area labeled “Control Logic”,
which is animated during the simulation, shows the progress of the clock
cycles.

The internal bus isn’t accessible but the ports make it possible to connect
anything necessary to the microcomputer. This is limited, of course, by the
number of ports available. For testing purposes, we will soon see how to take
advantage of all the available options during the simulation.

The following figure shows the block schematic of the inside of the microcom-
puter. At the center, we see the ROM and RAM memory subsystems. Next
to the CPU are the reset generator and the clock generator. If you notice the
Reset connections, the CPU can be reset by the internal generator and also
by the external Reset input. Output RsOut is the external copy of the reset
sent to the CPU.

The Int line is connected to all the processor’s interrupt request lines (IRQ2,
IRQ1 and IRQ0). By activating Int, we are asking the CPU to launch interrupt
handler 7, which starts at address 0038h. See the table in Section 2.1.5.

The figure shows the 8-bit input and output ports connections (IA, IB, IC,
ID and OA, OB, OC, OD), each with its own signalling line (rA, rB, rC, rD
and wA, wB, wC, wD, respectively).
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2.4.1.2 The “DMC8 Enhanced Microcomputer”

This version is very similar to the basic DMC8 Microcomputer seen above but
it offers double the input and output lines. They are divided into 8 parallel
input ports and 8 parallel output ports. This version also offers 7 interrupt
lines. For everything else, the description of the basic DMC8 Microcomputer
also applies to this version.

In the figure below, the schematic shows 64 LEDs connected to the output
ports, an ON/OFF switch connected to input port IA and a timer connected
to interrupt line 7 at the bottom right.

The component symbol shows the 8 input ports (IA, IB, IC, ID, IE, IF, IG
and IH) at the top left, and 8 output ports (OA, OB, OC, OD, OE, IF, IG
and IH) at the bottom right.
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As before, each port makes a synchronization signal available: (rA, rB, rC,
rD, rE, rF, rG, rH for read and wA, wB, wC, wD, wE, wF, wG, wH for
write). Everything else has the same names and functionalities. As before, the
internal bus is not available.

The next page shows a block schematic of the “enhanced” version. Its internal
architecture is almost identical to the one we saw for the basic component
with two visible differences. The number of available ports has doubled and
the interrupt logic is different.

The interrupt logic makes 7 interrupt lines available: Int7, Int6, Int5, Int4,
Int3, Int2 and Int1. They are handled by a priority encoder that pilots the
processor’s 3 interrupt request lines: IRQ2, IRQ1 and IRQ0. The encoding
allows us to have up to 7 devices to handle with the interrupt technique. This
guarantees that the intervention priority will be managed. See the table below.

Int7 Int6 Int5 Int4 Int3 Int2 Int1 IRQ2 IRQ1 IRQ0 Interrupt Address

1 1 1 1 1 1 1 1 1 1 No request -

1 1 1 1 1 1 0 1 1 0 Int. 1 0008h

1 1 1 1 1 0 - 1 0 1 Int. 2 0010h

1 1 1 1 0 - - 1 0 0 Int. 3 0018h

1 1 1 0 - - - 0 1 1 Int. 4 0020h

1 1 0 - - - - 0 1 0 Int. 5 0028h

1 0 - - - - - 0 0 1 Int. 6 0030h

0 - - - - - - 0 0 0 Int. 7 0038h
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When the encoder has multiple simultaneous requests on lines Int7, Int6, Int5,
Int4, Int3, Int2 and/or Int1, will produce the code for the highest line in the
output, as seen in the previous table.

Let’s take an example: if two devices request an interrupt at the same time,
one on line Int6 and the other on line Int3, the one connected to line Int6 has
the higher priority. So, the encoder generates handler 6’s request (at address
0030h), and the processor is interrupted and acts on the request.

Now let’s imagine that the device whose request was fulfilled deactivates line
Int6 and that the other device keeps requesting the interrupt on line Int3.
Now the encoder interrupts the processor and generates handler 3’s request
(starting at address 0018h).

When the second request has been fulfilled, line Int3 deactivates and the
processor is finally free from interrupts. We will study this more in depth in
Section 4.4.

2.4.2 Developing a program

Developing a program starts with analyzing the project specifications, iden-
tifying the modules it will be made up of, and finally writing the source code
(in our case, in assembly language).

The code-writing process is helped by a text editor. The program writing
phase is followed by translation into machine code.

Its functionality can be checked by simulation or actually executing the code
on a prototype card. Each programming error is corrected by coming back to
the text editor. After that we repeat checking the program’s functionality.

2.4.2.1 Writing source code

The Deeds-McE microcomputer emulator can be used as a text editor. Among
its main features are syntax highlighting and unlimited Undo and Redo, aside
from all the classic text editor commands.

The following figure shows the emulator with a file open inside the code edi-
tor (a program written in assembly language). The text appears in columns
because the tabulator is pre-defined for assembly sources (columns of labels,
mnemonic codes, operands and comments). At the upper part under the menu,
we can see that the code editor is contained in one of the three pages that can
be selected by choosing the appropriate heading.
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If we click on the “System” heading, a window like the one below will open.
This page allows us to define the system’s hardware configuration according
to the needs of our project.

In the example in the figure above, we have chosen to use the basic version of
the microcomputer (shown on the left), and to set a configuration with 16 kB
of ROM and 32 kB of RAM (at the upper right), and default port addresses:
00h, 01h, 02h and 03h (in this order both for input and for output).
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It is important to define the hardware used by the system at the beginning
of the design phase to avoid inconsistencies between the written code and the
system configuration.

2.4.2.2 Translating source code into machine code

After defining the system and writing the program in the editor, we need to
translate that program into machine code. We click the icon indicated by the
orange arrow (see below) to activate the assembler.

When the program is translated and there are no syntactical errors in the
source code, the message below will appear at the bottom of the window to
indicate that we can now check its functionality.

2.4.2.3 Emulation and program verification

Now let’s click on the button indicated by the blue arrow in the figure below.

This will bring us to the “debugger” page. The debugger is a tool that allows
us to verify code functionality and it’s the third heading at the top of the
page. See the figure on the next page. The debugger has a decidedly complex
interface but it is actually well organized as we will see.

The page shows everything related to the state of our system, such as the
content of the processor’s registers, the memory locations, the state of the
input/output ports and the program being executed.
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Now let’s look at the sections that the debugger interface is divided into. We
will enlarge them and comment on them one by one.

The control bar

At the upper part of the figure, it is shown enlarged below. The control bar
has the buttons and controls to interactively execute the code.

“Step” executes one instruction only, the one pointed by the Pro-
gram Counter. Therefore, it allows for “step-by-step” execution of
the program.

“Animate” executes instructions one after the other automatically
at intervals set by a timer. The speed of execution is definable
through a cursor available further along on the same bar.

“Run” executes the program at the highest speed allowed by the
personal computer in use (for example with a 2 GHz CPU, we get
an execution like that of a real 2 MHz clock).
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“Pause” (unsurprisingly) pauses the emulation if it had previously
been started by “Animate” or “Run”. One can start execution
again by clicking on “Step”, for example.

“Over” has two fixed positions (pressed or released). If it is active
in the “Step” and “Animate” modes, the emulator executes the
subprograms as if they were one instruction.

The subprograms will be examined next in Section 3.4 Chapter 3. For now,
it is enough to say that they are sequences of instructions that can be called
with the “CALL” instruction.

This cursor helps the user regulate the speed of exe-
cution in the animation mode. The minimum is one
instruction per second.

The upper field in the clock section
shows the number of clock cycles that
have run as of system reset.

The “Clear” button makes it possible to set the number in the lower field to
zero. This number represents the number of clock cycles run as of the most
recent action on the button (or as of system reset). This partial counter is
useful, for example, when we want to assess a program’s execution times.

“Reset” controls the microcomputer’s Reset input. When it is
pressed, the emulated system is kept in its initial state. When
it is released, it goes back to responding to emulation commands.

In the basic version of the microcomputer, this button controls
the microcomputer’s Int inputs and makes it possible to manually
request an interrupt of the processor.

In the “enhanced” version, rather than
just one button, there are seven, one for
each interrupt line.

The register section

The “Registers” section shows the internal state of the processor, namely what
is contained in all the registers and flags (see the following figure). Note, for
example, accumulator A at the upper left and the flags at the right represented
one by one but grouped as register F. The content of the registers is updated
during the course of execution of the machine code.

This section also gives us the option of manually changing the value of the
registers. We can do that in binary mode by pressing the small, round, colored
buttons of the individual bits or in text mode by inserting the number in the
field at the right of each register (the context-sensitive menu in this section
allows us to set the format to decimal or hexadecimal).

It is useful to change the content of the registers in the program test phase to
shorten working times.
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For example, if there is a loop in the code, under some circumstances it might
be useful to force an early exit from that loop by manually changing the value
of the register used as a counter.

Flags are only changeable in binary mode since they are individual bits. Man-
ually changing the value of a flag can also be useful for example to cause or
prevent a conditional jump for testing purposes.

The content of the Program Counter cannot be freely changed. We can only
assign it the instruction addresses of the program currently loaded in the
memory. Changing the value of the Program Counter makes it possible to
bypass parts of the code when we need to, to go and test individual parts of
the program.

The memory section

The memory section is shown below. The address of the first memory location
in a row is shown on the left in hexadecimals. The addresses of the other
locations on the same row are given by that address plus the number carried
over at the top of the columns themselves.
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For example, in the row identified by address 0030h the location containing
1Fh is found at address 0039h (0030h + 9h).

For our convenience, the emulator color codes the background of the differ-
ent memory areas according to their destination: ROM, RAM, non-initialized
area, area containing code, etc. In the example above, we can distinguish two
3-byte ROM areas that contain machine code (two jumps) from the areas not
explicitly initialized.

The grid also gives us the option of manually changing the content of the
memory locations, but only in the RAM area. To edit a location, we simply
need to click on it, delete the previous value and write the new number (in
hexadecimals).

Remember that only the RAM can be edited because the emulator places
the user on the same level as the CPU (which can’t write in the ROM). The
ROM was programmed in the previous phase, following the compilation of
the program. When the user starts using the debugger, the ROM is ready to
use and no longer modifiable at “run-time”, as in a real system.

The context-sensitive menu lets us move to another address quickly (see the
figure below) whereas the scroll bar on the right is impractical for large move-
ments.

The input/output port section

The following figure shows the section on the states of the input/output ports
for the “basic” microcomputer. It allows us to change the state of input ports
IA, IB, IC and ID, similarly to what we saw for the register section.
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The state of output ports OA, OB, OC and OD, however, cannot be changed
by the user, as they are generated by the microcomputer.

We have seen that port addresses are defined on the system definition page.
This example shows the default addresses. In the “enhanced” version, the
empty spaces we see in this section are filled by the other ports (we have 8
input ports and 8 output ports in total).

The object code section

The executable code section (see below) is very important from an operative
perspective. We see multiple columns in this window.

Columns two and three show the instruction address and its machine code,
respectively (both in hexadecimals).
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The following columns show the corresponding source code (label, mnemonic
code, operands and comment), which has generated the machine code shown
on the left.

To learn to read this grid, let’s look at the first row. We find opcode C3h
at address 0000h, followed by bytes 00h and 01h (we read: C30001 in the
box). As we can see, this instruction takes up 3 bytes. In column 5, we read
“JP START”, the instruction’s source code. Further down, the START label
corresponds to address 0100h, which is split into two bytes (in little-endian
convention) and placed immediately after opcode C3h.

When we test our program, the instructions being executed are highlighted
row by row in this window. When execution is paused, the instruction high-
lighted is the one that still needs to be executed.

It is possible to insert “breakpoints” in the code. They let the system know
when to stop code execution. During execution, if a breakpoint is found, exe-
cution is immediately stopped before the instruction indicated. This gives the
user the chance to proceed in step mode, for example.

Breakpoints are very useful because they allow us to very quickly execute
parts of code that have already been tested and also to stop where we need to
more closely examine the execution of instructions, possibly one by one. To
insert or eliminate a breakpoint, we go to the grid and select the row of the
instruction we want the emulator to stop at, then we use the context-sensitive
menu (see the following figure).

After we insert a breakpoint, a little red square will appear to highlight it, as
shown in the following example.
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2.4.3 Configuring the microcomputer component

After checking the program’s logical functionality in the Deed-McE, we can
load the developed project in the DMC8 microcomputer component inserted
into the Deeds-DcS schematic. The figure below shows the component’s
context-sensitive menu, where the “Load DMC8 Project” menu item is high-
lighted. It accepts project files with an “.mc8” extension. The project includes
the source assembly code as well as the memory and port configurations.

The system compiles the source program contained in the project and loads
the microcomputer’s ROM with the resulting machine code ready to execute
when the whole circuit is simulated.

The next figure shows the context-sensitive menu again, but highlights the
“DMC8 Debugger” sub-menu. This allows us to activate a certain number of
windows useful to analyze and check code execution.

As we can see, these menu items allow us to open the sections from the Deeds-
McE that we saw previously. Here, they can be put on the screen separate
from one another if we like, each in a stand-alone window. In the next few
chapters, we will examine how to use these windows and conduct a timing
simulation of a network that includes a microcomputer.
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2.5 Exercises

The digital content pages of the book on the Deeds simulator website have
outlines of the schematics, diagrams and/or programs to complete for each
exercise. Those same web pages also have the files for the solutions, so that
students can check their work.

2.5.1 Memory systems

1. Define the memory map of a system that includes a 1-kbyte ROM allo-
cated as of location 0000h, and two 1-kbyte RAMs connected from location
8000h on.

2. Take the memory system described in the following schematic, and obtain
its memory map by analyzing the logic highlighted in section S.
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3. In the schematic below, a memory system is composed of four 1-kbyte
ROMs and four 1-kbyte RAMs. Draw its memory map (we suggest begin-
ning your analysis at the logic highlighted in section S).
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4. Complete the schematic of the partially defined memory system below so
that the 8 kB of ROM are allocated as of address 0000h, and the area for
the 32 KB of RAM ends at address FFFFh.
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2.5.2 Parallel input/output ports

1. Taking the parallel port systems in the following figures, write the Boolean
expressions of the decoding networks that control the enables of each port
and then draw the corresponding I/O map.

a) One input port, one output port.
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b) Four input ports.
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c) Two input ports, two output ports.

2. Consistently with the I/O map below, design the decoder for a system
with eight parallel output ports. Write the Boolean expressions for the
enables of each port. The schematic to fill in can be found on the next
page.

Hex A7 A6 A5 A4 A3 A2 A1 A0 Ports

F8h 1 1 1 1 1 0 0 0 OA Output

F9h 1 1 1 1 1 0 0 1 OB Output

FAh 1 1 1 1 1 0 1 0 OC Output

FBh 1 1 1 1 1 0 1 1 OD Output

FCh 1 1 1 1 1 1 0 0 OE Output

FDh 1 1 1 1 1 1 0 1 OF Output

FEh 1 1 1 1 1 1 1 0 OG Output

FFh 1 1 1 1 1 1 1 1 OH Output
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2.6 Solutions

2.6.1 Memory systems

1. The requested memory map.

Hex A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Comment

0000h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 kB
↓ . . . . . . . . . . . . . . . . ROM

03FFh 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0400h 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Free
↓ . . . . . . . . . . . . . . . . Space

7FFFh 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8000h 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 kB
↓ . . . . . . . . . . . . . . . . RAM

83FFh 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

8400h 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 kB
↓ . . . . . . . . . . . . . . . . RAM

87FFh 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

8800h 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Free
. . . . . . . . . . . . . . . . . Space

FFFFh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2. The memory map derived from the network.

Hex A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Comment

0000h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 kB
↓ . . . . . . . . . . . . . . . . ROM

03FFh 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0400h 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 kB
↓ . . . . . . . . . . . . . . . . RAM

07FFh 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0800h 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Free
. . . . . . . . . . . . . . . . . Space

FFFFh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The NOR gate only generates a ‘1’ when all the inputs are at ‘0’. So that
the following AND gates can generate a ‘1’ in the output, lines MEMREQ,
A15, A14, A13, A12 and A11 all have to be at ‘0’.

If they are, we go ahead and examine the rest of the inputs at the AND
gates. If A10 = ‘0’, the ROM selection is enabled. If A10 = ‘1’, however,
the RAM is selected.

Therefore, if memory request MEMREQ is active and the address is be-
tween 0000h and 03FFh the ROM is enabled. The RAM is activated in
the area between 0400h and 07FFh.
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3. As suggested in the text, we begin the analysis by the NOR gate. We
know that it only generates a ‘1’ when all the inputs are at ‘0’, so A15,
A14 and A13 must be ‘0’ and, similarly, line MEMREQ must be active.

Now, supposing we have a ‘1’ in the output of the NOR gate, let’s examine
the second logical level (the AND gates). If A12 = ‘0’, the ROM bank
selection circuit is enabled (shown in section A). If A12 = ‘1’, the RAM
bank decoder (section B) is enabled.

So we conclude that if the memory request MEMREQ is active and the
address is between 0000h and 0FFFh the ROM bank is enabled. If the
address is between 1000h and 1FFFh, the RAM bank is enabled. The
resulting memory map is shown below.

Hex A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Comment

0000h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 x 1 kB
↓ . . . . . . . . . . . . . . . . ROM

0FFFh 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1000h 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 x 1 kB
↓ . . . . . . . . . . . . . . . . RAM

1FFFh 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2000h 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Free
. . . . . . . . . . . . . . . . . Space

FFFFh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4. To complete the schematic, we need to define the address decoders. With
the description in the text in mind, let’s allocate the two ROM de-
vices so that one of them activates in the interval between addresses
0000h..0FFFh, and the other between 1000h and 1FFFh.

Given that the overline of MEMREQ indicates that this input is “active
low” and not a true negation, the expressions for the ROM decoders are
the following.

CSROM 0000h =(MEMREQ) + A15 + A14 + A13 + A12

CSROM 1000h =(MEMREQ) + A15 + A14 + A13 + A12

Similarly, to define the RAM decoder, one of the two components activates
in the interval 8000h..BFFFh, and the other between C000h and FFFFh.
The two expressions are shown below.

CSRAM 8000h =(MEMREQ) ·A15 ·A14

CSRAM C000h =(MEMREQ) ·A15 ·A14

The complete schematic is shown on the next page.
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2.6.2 Parallel input/output ports

1. Assuming that the overline of IOREQ, READ and WRITE does not in-
dicate that there are explicit negations, but that these inputs are “active
low”, the expressions for decoding the ports and the input/output maps
are as follows.

a) To make it easier to read, let’s define the following intermediate ex-
pressions:

EN = (IOREQ) + A7 + A6 + A5 + A4 + A3 + A2 + A1

Thus, the decoding expressions are:

EIA = A0 · (READ) · EN

EOA = A0 · (WRITE) · EN

The map of the ports follows.

Hex A7 A6 A5 A4 A3 A2 A1 A0 Ports

00h 0 0 0 0 0 0 0 0 IA Input

01h 0 0 0 0 0 0 0 1 OA Output

b) Here, as above, it makes sense to define an intermediate expression:

EN = (IOREQ) + (READ) + A7 + A6 + A5 + A4 + A3 + A2

The resulting expressions:

Y0IA = (A1 ·A0) · EN

Y1IB = (A1 ·A0) · EN

Y2IC = (A1 ·A0) · EN

Y3ID = (A1 ·A0) · EN

The I/O map.

Hex A7 A6 A5 A4 A3 A2 A1 A0 Ports

00h 0 0 0 0 0 0 0 0 IA Input

01h 0 0 0 0 0 0 0 1 IB Input

02h 0 0 0 0 0 0 1 0 IC Input

03h 0 0 0 0 0 0 1 1 ID Input
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c) When we have defined the following:

EN = (IOREQ) + A7 + A6 + A5 + A4 + A3 + A2 + A1

We get the expressions:

EIA = A0 · (READ) · EN

EIB = A0 · (READ) · EN

EOA = A0 · (WRITE) · EN

EOB = A0 · (WRITE) · EN

The map (notice that an input port and an output port are both
located at the same address).

Hex A7 A6 A5 A4 A3 A2 A1 A0 Ports

00h 0 0 0 0 0 0 0 0 IA Input

00h 0 0 0 0 0 0 0 0 OA Output

01h 0 0 0 0 0 0 0 1 IB Input

01h 0 0 0 0 0 0 0 1 OB Output

2. The requested network including eight output ports. Let’s define the fol-
lowing intermediate expression:

EN = (WRITE) · (IOREQ) ·A7 ·A6 ·A5 ·A4 ·A3

We get the following expressions for the decoder:

EOA = A2 ·A1 ·A0 · EN

EOB = A2 ·A1 ·A0 · EN

EOC = A2 ·A1 ·A0 · EN

EOD = A2 ·A1 ·A0 · EN

EOE = A2 ·A1 ·A0 · EN

EOF = A2 ·A1 ·A0 · EN

EOG = A2 ·A1 ·A0 · EN

EOH = A2 ·A1 ·A0 · EN

The next page shows the complete schematic of the port system.



2.6 Solutions 187



3

Programming the DMC8

Abstract In this chapter, after a brief and general introduction to the pro-
gramming languages and their compilers, the DMC8 assembly language is pre-
sented. The different sections will describe the processor’s addressing modes,
categorize the instructions available, and provide examples to illustrate their
functionality. Particular attention will be given to jumps, delay loops, call
and return from subprograms, and to the usage of the stack. The end of the
chapter will provide several programming examples. We will deal with the
emulation of combinational and sequential networks, the calculation of simple
mathematical expressions, and the emulation of finite state machines.

3.1 Introduction to assembly language programming

If we were to design a control system for an industrial plant, for example, we
would face both hardware and software problems. Once the hardware system
architecture is defined, we would need to work on the management and control
software for the plant. The program we write will gear our system toward the
specific control application.

The tasks our program has to do can be described by an algorithm. An al-
gorithm can be expressed in any form, such as in words (like a recipe or
directions) or through images (like a map of the emergency exits in a build-
ing). We can use graphical languages (such as flow charts) or programming
languages.

In order for our microprocessor-based system to carry out the requested tasks,
we need to express the algorithm in a language the processor can understand,
machine language.

3.1.1 Programming languages

As we have seen since Section 1.2, translating a textually expressed algorithm
understandable by people into machine code is a long, difficult process prone
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to errors. This is why we need software that can automate the process. We
were introduced to this in Section 1.2.6 and developed the idea by seeing the
Deeds-McE emulator in Section 2.4.2.2.

Generally speaking, there are different translators associated to different lan-
guages. A program written in any programming language is called a “source
program”.

3.1.1.1 Languages at a “high level” of abstraction

The more understandable a language is to humans, the higher the “level of
abstraction” with respect to the machine. Languages with a high level of
abstraction have very expressive syntactic constructs that make it possible to
write algorithms that are short and easy for humans to understand. When
these constructs are translated, they generally give rise to a large number of
machine instructions.

Some languages with a high level of abstraction are Basic, Fortran, Cobol,
Pascal, Object Pascal, Modula-2, C, C++, Java and C#. Each of these offers
a different syntactic construct in order to facilitate writing algorithms accord-
ing to the different programming paradigms. Microprocessor manufacturers
normally offer support for the most common high level languages such as C
and C++.

Translators used for high level languages are commonly called “compilers”.
When a source program is compiled, the result is a program in machine code
that the processor can directly execute. Once the machine code is available
and memorized, the compiler will only need to be used again if the source is
changed.

Another type of translator called an “interpreter” is used to translate the
source code directly at the moment of execution. That is outside the scope of
this book.

3.1.1.2 Languages at a “low level” of abstraction

Low level languages like Assembly (specific to each processor) have mnemonic-
symbolic instructions that correspond one-to-one with the machine instruc-
tions that the microprocessor can directly execute.

For a given processor, there is a specific “assembler” that programmers use.
An assembler is a software application that translates a program written in
mnemonic assembly code into the corresponding machine code.

Assembly language allows the programmer to directly manipulate registers
and bits inside the machine. It is typically used in situations that call for par-
ticularly efficient execution. Programming in assembly code is arduous work
and especially time consuming. Every minute detail must be programmed and
even apparently tiny, mundane particulars must be specified. Using assembly
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also requires the programmer to have a solid understanding of the hardware
that executes the program.

For ordinary, (more or less complex) programs, these disadvantages lead one
to favor using high level, more concise and understandable languages. Often a
mixed technique is used: a high level language to write most of the code, and
assembly code for parts that need special optimization (time and/or memory).
Once the different modules are translated into machine language, they are
“connected” together to make a single, executable machine code thanks to
another software called a “linker”.

A program written in assembly code is not “portable”, that is it is specific for
that microprocessor and the hardware around it. Reusing a certain program
on a different machine may require a complete rewriting of the code. Programs
written in standard high level language, however, are more interchangeable
among different machines and microprocessors as long as the right compilers
are used.

3.1.1.3 From the source code to machine code that is executable
in the system

To summarize, compiling source code produces object code, which is directly
executable by the machine (except for the case of interpreters). Object code
can be obtained by translating high level or low level languages. The figure
below shows the consecutive phases of programming a system.

If the program is made up of multiple, interdependent modules of code due to
different translations, the linker intervenes, giving us one object code (dividing
a program into modules is very useful if the project is complex).

The machine code then needs to be loaded in the memory of the system where
it will run. This can be done by a a purely software module called a “loader”,
when possible. In many cases, however, it is still necessary to use a hardware
“programmer”. The programmer lets us permanently load the machine code
into the system’s ROM memory so it is ready to execute when the computer
is turned on.

In the rest of the book, we will use assembly language. This choice is meant to
keep the reader in contact with microprocessor system architecture, allow for
total control over the system hardware and promote a better understanding
of how it interacts with the programming.
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3.1.2 DMC8 assembly language

In assembly language, each line of source code is divided into a few fields that
must be separated by spaces or tabs. Each line contains only one instruction.
When we write a program in assembly, we need to conceive of our page as
virtually divided into four columns (or fields), as shown in this example:

The meaning of the four fields:

Label It is used as a reference for the program’s jumps (the program-
mer only inserts it when necessary).

Mnemonic It contains the mnemonic code of the instruction.
Operand It includes the operand (or operands) of the mnemonic code of

the instruction.
Comment As an optional text, it helps to understand the code.

Generally, comments should begin with a semi-colon but some assemblers
accept any symbol: they assume that everything following an instruction,
which is recognized as complete, is a comment. A comment usually does not
repeat the task carried out by the instruction since it is already clear in the
mnemonic code. Rather it should explain the programmer’s intent in words
so that the user better understands the algorithm implemented.1. Comments
are essential as they help the programmer make his/her own code readable
for others as well as for themselves.

3.1.2.1 A sample program written in assembly DMC8

A sample program is shown here below. It adds two numbers represented in
8 bits. The data are retrieved from the system’s ROM memory and the result
is saved in the RAM.

1 In this first phase, the comments in the code do not follow this best practice
since we want to better support the understanding of the mnemonic codes that
we encounter for the first time.
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By looking at the code and reading the comments, we can distinguish four
consecutive phases:

1. Acquisition of (reading) the first operand, from the ROM to the CPU
2. Acquisition of (reading) the second operand, from the ROM to the CPU
3. Adding the two operands inside the CPU
4. The CPU stores (writes) the result to the RAM.

Phase one was coded using two instructions. The DMC8 does not have an
instruction like ‘LD B,(0500h)’ and transferal to register B has to be done
in two steps, passing through register A. Often an instruction does not allow
all the operands that would seem admissible from a syntactical perspective.
When in doubt, it is always a good idea to consult the summary tables showing
DMC8 instructions, in order to avoid errors (See Appendix C).

Once the first three instructions are executed, the operands are transferred
from the ROM memory to registers A and B. The ADD instruction adds
the two operands in A and B and puts the result in A. Then, the second to
last instruction transfers the result of the addition to the RAM memory. The
last instruction, HALT, stops the processor. Hereafter, this instruction will
be used very rarely. Except in special cases, it makes little sense to stop the
processor.

Remember that the assembler does not distinguish between capital and lower
case letters (technically speaking, it is not “case-sensitive”). This means writ-
ing “sum: ld a,(0500h)” would have achieved the same thing.

3.1.3 Constants and variables

High level languages offer the option of assigning a “type” to constants and
variables. By assigning this attribute to constants and variables when they
are declared, we let the compiler help us write our code. For example, the
compiler can warn us if we are making an error in our code by transferring a
32-bit constant to a 16-bit variable.

High level languages also free us from worrying about where our constants and
variables will be allocated, how they will be implemented or whether they will
overlap, etc. This is because the compiler itself takes care of those important
specifics for us.

There are also assemblers that let us assign a type to constants and variables.
Nevertheless, a programmer using assembly has to get used to manipulating
data without using types, partly because not all assembly languages support
assigning types to variables, especially those with small, simple microproces-
sors. So programmers should decide directly which memory locations to use
for a certain constant or variable and how many bytes to reserve for them.

In the example we are considering, the programmer chose to take the operands
from two ROM locations at addresses 0500h and 0501h. Since this is previously
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programmed read only memory, the two locations contain numbers that are
constants, from the perspective of the processor. Further ahead, we will see
how we can set up a constant in ROM.

The programmer also decided where to allocate the variable that will assume
the result: in the RAM at address 8000h. These addresses are normally chosen
through a consideration of the available space in the ROM and RAM, and a
comparison with the requirements of other software modules there may be.

Notice that, in our example, a label has been placed before the first instruction.
Here, the programmer wanted to label the sequence of instructions to make it
more readable, which is why they used the ‘SUM’ string, to make its function
manifest.

3.1.4 The EQU directive

To meet the needs of the programmer, all assemblers allow for assigning an
identifying symbol to variables similarly to high level languages. If we take
advantage of this, we can rewrite the program as it appears below. For the
first time, we encounter the EQU directive, EQU being an abbreviation of
‘equal’.

Note that a directive is not an instruction, but rather a command for the
assembler, inserted into the source code. The assembler uses that command
to correctly translate the source code, but it doesn’t insert any instruction
corresponding to the directive in the machine code. This is why directives are
also called pseudo-instructions.

In the example, by means of the EQU directive, we have declared that RE-
SULT is a variable at memory address 8000h. However, this is an abstraction
on our part; we are actually only declaring the corresponding value of a sym-
bol. In fact, the EQU directive simply declares that RESULT is a symbol
and that it is equal to the value 8000h. It is only by extension that we take
the liberty of saying that RESULT is a variable, simply because we use the
symbol RESULT in the code rather than the explicit address of a memory
location, writing LD (RESULT),A. In other words, the variable is found at
address RESULT = 8000h and we can abbreviate this by saying that the
variable itself is called RESULT, identifying the variable with its address.

For easy readability, the programmer chooses to define the variables by declar-
ing their respective symbols and corresponding addresses at the beginning of
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the program. Note that when we define a variable, we need to choose an ad-
dress for it and take care that the space assigned to it doesn’t overlap with
other variables. We can define variables made up of multiple bytes and re-
serve the necessary space for them. In this case, the identifying symbol of the
variable is usually the address of the first byte in the memory.

Aside from the readability of the code, there is another advantage related
to using a symbol instead of a number. If a programmer at a given moment
modifies a program by changing the allocation of the variable RESULT, they
can do it by editing the row where RESULT is defined, without being forced
to look through all the rows of source code that have address 8000h (in this
example, that’s only one row but in a full program there could be many
scattered everywhere).

An important syntactic rule requires us to give symbols a name beginning
with a letter of the alphabet so that the numbers are easy to distinguish
from the symbols. For hexadecimal numbers, which can begin with a letter,
we must add a leading zero before the number. This helps the assembler to
deal with situations that would have been ambiguous. For example, if we
write LD A,(FEBAH), the assembler interprets the subject in parentheses as
a symbol called FEBAH. If we had wanted to write a hexadecimal number in
parentheses, we would have had to write 0FEBAH (with a leading zero), and
it would have been interpreted as a number (equal to 6521010).

The assembler translates the source code by scanning it twice. When it scans
for the first time (“Pass 1”), it doesn’t produce machine codes, but identifies
all the addresses they will be allocated to, instruction by instruction. It does
this by assigning precise addresses to the labels it finds to the left of the
instructions. These addresses are memorized in the “symbol table”. This table
also holds all the symbols defined through the EQUs.

When it scans for the second time (“Pass 2”), the table has values corre-
sponding to all the labels and symbols used. Thus, every time a symbol or
label appears in the source code, the assembler uses the table to substitute it
with the corresponding value (in our example, in place of RESULT, the value
8000h is inserted in the machine code).

3.1.5 The ORG directive

Every DMC8 instruction translated into machine code takes one to four bytes
of memory. If nothing is specified, the assembler translates the code bearing in
mind that the machine code is allocated in the memory as of address 0000h.

The programmer can still specify a different address to allocate the various
parts of the code. They do this by using the ORG directive, abbreviation
of ‘origin’. The ORG <address> directive orders the assembler to allocate
the code that follows the directive as of the address specified as an operand.
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Below, the previous example is shown again with some added rows of code
which use the ORG directive multiple times.

The first ORG commands the assembler to allocate instruction JP 0100h,
which follows the directive, at address 0000h. Due to the above mentioned
default, this actually wouldn’t be necessary but it is a good idea to insert
it anyway to make the code clear and easy to read. We know that after the
system is reset, the first instruction is taken from the processor at address
0000h. In our example, that instruction is a jump to location 0100h.

The second ORG requires the assembler to place the following instruction,
LD A,(0500h) labeled as SUM, at address 0100h. So, the second ORG places
our program as of address 0100h, and the first ORG connects the hardware
reset to the program, thanks to the jump to 0100h.

One might ask why we didn’t allocate the program directly at address 0000h
since the processor starts here, instead of using a jump and making it start at
0100h. The reason is that several locations after 0000h are reserved. In fact,
the locations from 0008h to 0038h are reserved for handling interrupts. See
Section 4.4. A classic tactic is to circumvent the first 256 locations and jump
to address 0100h, found after all the reserved locations.

3.1.6 The DB and DW directives

Programmers often need to define constants. In our example, we know that
the two operands of the addition were taken from the ROM. To define one
or more 8-bit constants we use the DB (Define Byte) directive and to define
16-bit constants (subdivided into two bytes) we use the DW (Define Word)
directive.

Let’s apply DB to our example. See the following listing. Here, we see there is
an added ORG (over the previous version of the example) after the sequence
of instructions. ORG defines the address (0500h) where the assembler will
allocate what follows.

The first DB orders the assembler to insert the byte with value 34h at address
0500h. Note that, like the other directives, DB is not translated into executable
machine code; it is not an instruction.
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It does, however, allow us to insert the constant defined by its argument in
the ROM. The second DB asks to insert byte 12h in the next location (at
address 0501h).

Before each of the DBs we have inserted a label: OPE 1 and OPE 2, respec-
tively. Thus, we make sure the assembler inserts the two labels in the symbol
table so as to associate the symbol OPE 1 to the address of the first of the two
bytes (34h), and OPE 2 to the address of the second (12h) (0500h and 0501h,
respectively). Instruction LD A,(OPE 1) will be translated in the second pass
as if we had written LD A,(0500h). The same goes for the other instruction.

Finally, note that we would have been able to omit ORG 0500h. If we had, the
assembler would have allocated the two DBs immediately after the program
code (rather than at the address we chose) without jeopardizing the program’s
functionality.

The following figure shows the result of the compilation as seen in the emulator
in the object code section. The program is ready to execute.

We have seen that the second column shows the memory addresses while the
third shows the bytes that make up the machine code. At address 0000h we
find the code of the jump instruction (C3h), followed by the address to jump
to (0100h, divided into two bytes: high and low, 00h and 01h).
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Now let’s look at the memory section to see the result of the compilation from
this point of view. See the figure below.

The colored background indicates which locations the result of the compilation
was inserted in. The others show a default value2. At address 0000h we find
the machine code for the jump to address 0100h, as was shown in the section
on object code.

Let’s move a little further ahead in the memory. See the figure below.

At 0100h we find that part of our program’s code that was allocated right
here, as we know, due to the ‘ORG 0100h’ directive. We can see that it takes
up 12 bytes and we also see the machine codes that were visible in the object
code window from 3Ah to 76h.

Let’s move even further ahead (see the figure below) and look at locations
0500h and 0501h, which contain constants 34h and 12h, those defined by the
two DB directives.

What would have happened if we had omitted the last ORG directive, as we
alluded to previously? This is how the result of the compilation would appear,
with the two constants 34h and 12h allocated right after the program code.

2 In a real system, the non-programmed locations will show a value dependant on
the physical characteristics of the memory. Here the emulator puts them at FFh.
We can ignore these values with no consequences.
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The syntax of DB and DW makes it possible to define many types and formats
of constants. They can be numbers, ASCII characters, or whole tables of
numbers and characters. Below are some examples of how they are used.

Now let’s analyze the rows of this last example, from the beginning (shown
below for easy consultation). The first row defines the symbol AVALUE =
3Fh through the EQU directive.

This definition makes it so that the assembler adds this symbol and its corre-
sponding value to the symbol table. Through EQU, the programmer has only
defined a symbol for use in compiling the program. Note that EQU does not
load this value in the memory; the only directives that can load constants in
memory are DB and DW.
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A few rows ahead, in fact, we find a DB directive with the symbol AVALUE
as its argument.

With these rows of code, the assembler inserts value 3Fh, which was just
assigned at symbol AVALUE, in the ROM location of address 0800h. The
following figure shows the content of the ROM memory. The byte at location
0800h is highlighted.

At the BYTES label (see below) DB has multiple arguments separated by
commas. Each argument starts with a byte; they are inserted in the memory
in the order in which they are written. In this case, the numbers are written
in decimal form and will be translated into binary code by the assembler.

The following figure shows the 8 bytes allocated in the ROM.

The three DBs following the ASCII label define the string of characters. The
syntactic rule is that individual ASCII characters or strings of them must be
enclosed in quotation marks (ex. ˝A˝, ˝BCD˝).
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At the DIGITS label, the argument of DB is a string of 10 ASCII characters
corresponding to symbols of decimal numbers which are translated into the
respective binary codes 30h, 31h, ..., 39h, in sequence.

If we include quotation marks in the string so that the assembler considers
them as characters and not as delimiters, we need to write them twice (˝˝),
as shown in the third row of the example. When this source row is translated,
we find the codes 41h, 22h, 42h, 22h and 43h in the memory. The figure below
shows the bytes allocated by these rows of code.

The first line here below, at the NUMBERS label, defines 4 bytes.

Negative numbers are translated into two’s complement code. Since the as-
sembler codes them on one byte, we can only represent negative numbers from
-128 to -1. A ‘+’, or no sign at all forces the assembler to code the number as
an unsigned integer with a value from 0 to 255. This means the programmer
must pay close attention because writing -1, 255 or FFh is the same thing
from the perspective of the result produced in the assembler.

The fourth number is defined by using the symbol AVALUE again, which for
the assembler, has the value 3Fh. At the MIX label, we have an example of
mixed parameters.

Here below, the bytes allocated by these last directives are highlighted.
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Below, we have some examples of how the DW directive is used.

At the WORDS label, DW defines the 16-bit constants divided into pairs of
bytes, in the memory. Consider the first argument, which is number 8. Since
it is coded on 16 bits, it will appear as 0008h, but it is divided into two bytes:
08h (low part) and, then 00h (high part).

The number -8 is converted by the assembler into the number FFF8h in two’s
complement code with the lower part, F8h, first.

The number 1033, converted into binary with no sign, reads as 0409h in Hex
with the lower part, 09h, inserted first.

For the fourth operand, we recall the symbol AVALUE. Extended to 16 bits
and expressed in Hex, it is worth 003Fh, divided into bytes 3Fh and 00h.

In the last row, we define 8 zeroes but, since this is a DW directive, we will
get 16 memory locations at zero (8 numbers, two bytes each).

Finally, the figure below shows the result of the assembler having allocated
the various arguments of the two DWs, as they appear in the ROM of the
emulator. Note the 16 locations at zero as of address 0830h.



3.2 Addressing modes 203

3.2 Addressing modes

In Section 3.1 we looked at some of the instructions the DMC8 microprocessor
can execute. An instruction can operate on one or more operands. The data
the instructions operate on can:

— be contained in the internal registers of the CPU.
— be contained in the memory locations.
— come from peripheral Input/Output circuits.

As mentioned in Section 1.6.2, the term “addressing mode” indicates the way
in which the CPU retrieves the data to work on for a given instruction.

We have already seen other ways to transfer data (LD instructions) that can
be distinguished based on the different locations of the source operands and
destination operands. For example:

LD A,(OPE 1) ; Copy the content of memory location OPE 1 in A.

LD B,A ; Copy the content of A in B.

Note that even though we are dealing with data transfer operations with the
same mnemonic code LD, the source operands are in two different places in
the two cases. The first instruction copies the byte from memory to A. The
second instruction refers only to the internal registers.

The options of addressing modes in the DMC8 are listed here:

— IMMEDIATE addressing mode
— EXTENDED IMMEDIATE addressing mode
— DIRECT addressing mode
— REGISTER INDIRECT addressing mode
— INDEXED INDIRECT addressing mode
— REGISTER addressing mode
— IMPLIED addressing mode
— BIT addressing mode
— MODIFIED addressing mode

An instruction can have zero, one or two operands. The instruction adopts a
specific addressing mode for each operand. Because of the limitation on the
number of bits used in machine codes, not all of the combinations of addressing
modes are permitted.

For example, one cannot directly transfer a byte from one memory location
to another with just one instruction. The DMC8 doesn’t have an instruction
of the type “LD (3500h),(1F00h)”, so it must be replaced with the following
pair of instructions:

LD A,(1F00h) ; Copy the content of memory location 1F00h in A.

LD (3500h),A ; Copy the content of A in memory location 3500h.
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Generally, when a data transfer cannot be made with one instruction, we need
to use at least two, and a register for transit, often accumulator A. Now let’s
look at the specifics about the main addressing methods used in the DMC8
microprocessor.

3.2.1 IMMEDIATE addressing mode (8-bit data)

As seen in Chapter 1, with immediate addressing, the 8-bit operand is put
immediately after the instruction opcode.

Examples:

Mnemonic Machine code

LD A, 00h 3Eh [opcode]

00h [immediate data to set in register A]

LD B, 5Fh 06h [opcode]

5Fh [immediate data to set in register B]

Note that the data to load in the destination register is found in the byte
following the opcode. After fetching the opcode, the microprocessor reads the
source operand from the next memory location using the PC to address it.

3.2.2 EXTENDED IMMEDIATE addressing mode (16-bit data)

With extended immediate addressing, the operand is made up of 16 bits (di-
vided into 2 bytes) and is found immediately after the instruction opcode, as
in the following example3:

Mnemonic Machine code

LD HL, 0C035h 21h [opcode]

35h [immediate data, low part, to set in register L]

C0h [immediate data, high part, to set in register H]

The processor reads the two bytes following the opcode and transfers them to
parts L and H respectively, of paired register HL. As before, the PC is used
to address the two bytes one after the other.

Other examples:

LD SP, 0FF00h ; Inizialize the Stack Pointer register to FF00h.

LD BC, 0FAFFh ; Set register BC = FAFFh.

3 Note that we need to place a zero before the hexadecimal number so that the
assembler can correctly distinguish the symbols (which have to begin with a
letter) from numbers (which have to begin with a numeral).
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3.2.3 DIRECT addressing mode

We have direct addressing when we find the address of the memory location
(that has the number to read or write) immediately after the opcode. There
are two types of direct addressing modes that differ according to the size of
the operand (8 bits or 16).

3.2.3.1 DIRECT addressing mode (8-bit data)

Examples:

Mnemonic Machine code

LD (0E000h),A 32h [opcode]

00h [memory address, low part]

E0h [memory address, high part]

... ...

IN A,(20h) DBh [opcode]

20h [port address (8-bit)]

In the first example we find address E000h after the opcode. It is divided into
bytes 00h and E0h. After the processor recombines the two bytes together, it
uses that number to address the memory and write the A content on it.

In the second example, after the opcode of instruction IN, the processor finds
the (8-bit) address of the input port that we want to read. The port of address
20h is copied to register A.

Notice the brackets. They let the assembler know that the number is to be
read (or written) in the memory cell pointed by the address in brackets.

Other examples:

LD A,(0E000h) ; Copy the content of the memory

; location E000h into register A

LD (845Fh),A ; Copy the content of register A

; into the memory location 845Fh.

OUT (0FFh),A ; Copy the content of register A

; to the output port at address FFh.

3.2.3.2 Direct addressing mode (16-bit data)

Example:

Mnemonic Machine code

LD HL,(820Fh) 2Ah [opcode]

0Fh [memory address, low part]

82h [memory address, high part]
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As in the previous example, the processor finds the address of the data to
transfer immediately after the opcode, but this time its size is 16 bits, since
its destination is a 16-bit register.

The processor uses the specified address to retrieve the first byte from the
memory. It will be loaded in register L. Right after, the address is incremented
and used to read the next byte in the memory, which will be copied in register
H. The overall result is that the 16-bit number is transferred, even though it
was done in two separate 8-bit steps.

Other examples:

LD (8F00h),HL ; Copy the content of register HL into the

; memory locations 8F00h and 8F01h.

LD BC,(1A00h) ; Copy the two memory locations 1A00h and 1A01h

; into the C and B parts of register BC, respectively

3.2.4 REGISTER INDIRECT addressing mode

With register indirect addressing, the content of a 16-bit register (BC, DE or
HL), that was specified in the instruction, is used to address the memory lo-
cation to read or write. To find the address of the data, the processor executes
an intermediate step: consulting an internal register, hence the name.

In the next example, the memory byte whose address is found in register HL
is transferred to register C. Naturally, register HL needs to be initialized with
the desired address beforehand.

Mnemonic Machine code

LD C, (HL) 4Eh [opcode]

Notice how compact the machine code is: just one byte. Everything required is
contained in the opcode with no need for further specifications. This address-
ing mode is convenient when we have to go to the same location multiple times
or when the location address is ”calculated” (incremented or decremented, for
example) as in data table management.

Here is an example of how it is used:

LD HL, 80F0h ; Initialize HL register at 80F0h, this 16-bit number

; will be used as memory address.

LD (HL), 3Fh ; Write the value 3Fh into the memory location

; 80F0h, pointed by the register HL.

INC HL ; Increment the HL content (it becomes 80F1h).

LD (HL), 12h ; Write the value 12h into the next memory location,

; that is pointed by HL = 80F1h.

INC HL ; Increment the HL content (it becomes 80F2h).

... ; ... (and so on)
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In this example, the memory address is specified only once at the beginning
and it is progressively incremented. We are initializing a table of values one by
one and specifying only the first address. Therefore, this address can identify
the whole table.

In the following example, 50 memory locations are initialized to zero as of the
location at address A700h. We specify only the address of the first one and
every time the loop repeats, we write a location and address it with register
HL, then we increment its content in order to address the next location. The
loop repeats 50 times using register B as a counter.

LD HL,0A700h ; Initialize HL with the address A700h.

LD B,50 ; Initialize B with the value 50

LOOP: LD (HL),00h ; Write the number 00h into the location

; pointed by the content of register HL.

INC HL ; Increment the address contained in HL

DEC B ; Decrement register B (used as a ‘counter’)

JP NZ,LOOP ; Repeat the loop until B is zeroed

...

As seen in this last example, indirect addressing makes it possible to point
to memory locations by managing the addresses directly from the program at
the moment of execution.

In high level languages, “pointers”4 are based on the options offered by indi-
rect addressing. Therefore, in assembly, the tasks the pointers can do can be
reproduced by the programmer using this addressing mode.

3.2.5 INDEXED INDIRECT addressing mode

This addressing mode is similar to the previous register indirect one but it has
an added feature. In this case, the address of the memory read/write location is
calculated by adding the value of the byte that follows the instruction opcode
to the content of one of the index registers (IX or IY). That byte is called
“displacement”, a constant that can be either positive or negative (between
-128 and +127).

Example:

Mnemonic Machine code

LD B, (IY+2Fh) FDh [opcode, first byte]

46h [opcode, second byte]

2Fh [displacement = +4710]

4 In high level languages, “pointers” are variables that let us “point to” other
variables. In other words, a “pointer” variable contains the address of another
variable. A pointer can be incremented or decremented and, generally, calculated.
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Here, the opcode is made up of two bytes: FDh and 46h, followed by the
displacement, which has value 2Fh = +4710 in this example. This instruction
reads the content of the memory location whose address is obtained by adding
constant 2Fh to the content of register IY, and copies it to register B.

Other examples:

LD IX, 9000h ; Initialize IX = 9000h

LD A, (IX+33h) ; Copy the content of the memory location

; pointed by register IX + 33h into register A.

CP (IX+01h) ; Compare the content of register A (implied)

; with the content of the memory location

; pointed by the address in register IX + 01h

Displacement constants are for addressing individual variables inside a “data
structure”. In high level languages, a data structure5 is a kind of container that
groups multiple homogeneous or heterogeneous variables together, allowing us
to reference the group of variables in a single, cumulative way.

For example, a structure can collect information about sending a package in
the mail, like its weight, length, depth, width, shipping date, etc., all in order.
Imagine for simplicity’s sake that the variables of weight and size take up one
memory location (one byte) each. If this structure is allocated to address IX
= B000h, the weight variable is found at address B000h, while the length,
depth and width are dislocated further by one constant (+1, +2 and +3, the
displacement), and so on with all the other variables depending on their size.

Let’s remember that IY and IX are 16-bit registers that cannot be divided
into upper and lower parts. Also, pay attention to the fact that we can’t
add a calculated displacement to the address specified by these registers at
the moment of execution. This is because we are dealing with a constant
displacement, defined when the programmer wrote the program; it can’t be
changed by the processor during the execution of the program.

3.2.6 REGISTER addressing mode

With this addressing mode, the information that specifies the register(s) to
be worked on is already contained in the opcode.

Example:

Mnemonic Machine code

LD A,D 7Ah [opcode]

5 In high level languages such as C and C++, data structures are called “struct”;
in Pascal and Delphi, they are called “record”, etc.
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The instruction asks to copy the content of register D in A. The operands are
both registers and we don’t need to specify the addresses.

The register addressing mode is often used next to other modes, for example
in data transfer instructions where we can specify one or more source or
destination register, as in this instruction: “LD B,(HL)”. In this case, we are
dealing with “register indirect” addressing mode with respect to the source
operand (HL), whereas for destination B we have simple “register” addressing
mode.

Other examples:

CP B ; Compare the content of register A (implied) with the

; content of register B (the flags are affected by the result)

AND L ; Calculate the bitwise AND between the content of A

; (implied) and the content of L (the result is stored in A)

3.2.7 IMPLIED addressing mode

In some instructions, the requested operation requires the use of a predefined
register. In arithmetic and logical operations, for example, register A is the
destination of the results by default (see some of the previous examples).

Examples:

Mnemonic Machine code

ADD A,L 85h [opcode]

SCF 37h [opcode]

NOP 00h [opcode]

The instruction ADD A,L explicitly specifies the two addends but register A,
which memorizes the results, is implied.

The instruction SCF (Set Carry Flag) acts exclusively on the Carry bit in the
flag register, forcing it to 1. We will see that it is often used in conjunction
with shift and rotate instructions.

We also find implied addressing in the NOP. We have already seen this in-
struction, which takes no action but simply makes 4 clock cycles go by. It is
one of the instructions with implied addressing mode, in that there are no
operands to specify.

3.2.8 BIT addressing mode

Bit addressing is used only in the instructions RES, SET and BIT, which we
will describe more broadly in Section 3.3. This makes it possible to specify a
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single bit among the eight, which constitute the byte contained in the register
or in the memory location specified by the instruction argument.

Example:

Mnemonic Machine code

RES 2,B CBh [opcode, first byte]

9Eh [opcode, second byte]

In this example, the instruction RES brings the bit in position 2 of register B
to zero. The bits are numbered from bit 0 (LSB) to bit 7 (MSB) and the bit
selection index is included in the opcode. The bit index can only be a constant
between 0 and 7, and not a variable (the number of the bit can’t be specified
with a register, for example).

Other examples:

SET 3,A ; The bit in position 3 of register A is set to ‘1’

SET 5,(HL) ; The bit in position 5 of the memory location pointed

; by register HL is set to ‘1’.

BIT 0,E ; Check if bit in position 0 of register E is ‘1’ or ‘0’,

; store the result into the Zero flag (Z).

3.2.9 MODIFIED addressing mode

Modified addressing is only used by RST (“Restart”) instructions, which force
the processor to jump to one of eight predefined memory addresses (0000h,
0008h..., 0038h) by using only one instruction byte6. In the following example,
all we need to know is that the processor is forced to jump to location 0038h:

Mnemonic Machine code

RST 38h FFh [opcode]

To understand this instruction more completely, first we’ll need to go into more
detail on some concepts in Section 3.4 where we will learn about “subprogram
calls”.

6 In other processors, this type of instruction is named INT, or TRAP.
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3.3 Types of instructions

Let’s place the instructions supported by the DMC8 into the following func-
tional categories.

— Data transfer instructions
— Arithmetic/logic instructions
— Shift/rotate instructions
— Bit manipulation instructions
— Jump instructions
— Instructions to call and return from subprograms
— Input/output instructions
— CPU control instructions

3.3.1 Data transfer instructions

These are also called “Load” instructions. They allow us to copy data from
register to register in the CPU or from a CPU register to the memory and
vice versa. There are instructions to work on 8-bit data and 16-bit data (in
pairs of bytes). They come in the form shown below:

LD <destination>, <source>

As we have seen before, this is read as “copy the content of the <source> to
the <destination>”.

3.3.1.1 Data transfer instructions (8-bit)

Depending on the addressing mode, the source element can be:

An immediate value (8-bit):

LD A,3Bh ; Load the value 3Bh (0011.1011b) in A

LD B,72 ; Load the decimal value 72 (0100.1000b) in B

LD L,01001000b ; Load the binary value 0100.1000 in L

The content of an 8-bit register:

LD A,B ; Load the content of B in A

LD D,A ; Load the content of A in D

LD H,E ; Load the content of E in H

The content of a memory location:

LD A,(0F001h) ; copy the memory byte found at address F001h

; into register A

LD C,(HL) ; copy the memory byte located at the address

; specified by the register HL into register C
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The destination element can be:

A register (8-bit):

LD B,E ; copy the content of register E into register B

LD D,00h ; copy the costant zero in D

A memory location, if the source element is a register:

LD (0F305h),A ; copy the contents in register A in the memory

; location located at address F305h

LD (HL),A ; copy the contents in register A in the memory

; location pointed by register HL

As mentioned in Section 3.2, this microprocessor does not support all the
combinations of addressing modes and we need to check the instruction tables
from time to time to see if a certain combination is supported. See Appendix C.
The list of 8-bit data transfer instructions is available on page 600.

3.3.1.2 Data transfer instructions (16-bit)

The processor actually executes 16-bit data transfer instructions as if they
were sets of two consecutive 8-bit data transfer instructions. The syntax is
the same as the 8-bit version but the operands are 16-bit data:

LD <destination>, <source>

The registers that can be classified as operands are the “paired” registers BC,
DE and HL or the (proper 16-bit) registers SP, IX and IY. Depending on the
addressing mode, the source element can be:

An immediate value (16-bit):

LD BC,5F3Dh ; copy the value 5F3Dh (0101.1111.0011.1101b)

; into the 16-bit register BC

The content of a 16-bit register:

LD SP,HL ; copy the content of HL into the SP register

The contents of two consecutive memory locations (16 bits in total):

LD HL,(0F140h) ; copy in HL the two bytes found in the memory

; locations at addresses F140h (low part → L)

; and F140h+1 (high part → H)

The pair of the locations is indicated only by the address of the first one. Fol-
lowing little-endian convention, the 16-bit operands allocated in the memory
are split into two bytes.
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The least significant one is placed at the address of the pair, while the most
significant one is placed at the next address. The destination element can be:

A 16-bit register:

LD IX,8001h ; copy the value 8001h into register IX

Two consecutive memory locations (16 bits in total):

LD (0F140h),HL ; copy the two bytes found in the lower and

; upper parts of the 16-bit register HL,

; respectively in the memory locations

; located at addresses F140h and F140h+1

Sixteen-bit data transfer operations are another case where not all addressing
modes are supported. For an overall framework of this, consult the summary
table on page 601, in Appendix C.

This group includes transfer instructions for byte pairs related to the “Stack”
memory area, which we have yet to study. For the sake of completeness, two
examples are available below:

PUSH HL ; saves the contents of HL on the top of the stack

POP IX ; retrieves the contents of IX from the stack

We will discuss these instructions in detail further on in Section 3.4 on sub-
programs and the stack area. This class of instructions is very important; we
will use them frequently.

3.3.2 Arithmetic and logic instructions

Arithmetic and logic instructions allow us to work with both 8- and 16-bit
numbers. This group of instructions, which relies on the ALU (Arithmetic-
Logic Unit) is especially interesting to use because it is supported by various
addressing modes, making it possible to write sufficiently versatile programs.
The list of all the arithmetic logic operations supported here is available on
pages 603..606, in Appendix C.

As we will see, the operations supported by the DMC8’s ALU are basic; for
example, we have no instructions to directly execute multiplications or divi-
sion. In any case, any non-implemented function can be carried out through
a sequence of basic instructions.

Clearly, the speed of execution would be much higher if the instructions were
supported by bespoke hardware inside the processor (think of the “math co-
processors” in the most powerful processors).
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3.3.2.1 Arithmetic instructions (8-bit data)

The DMC8’s eight-bit arithmetic instructions usually use accumulator A as
the first operand and destination for the result. If there is a second operand,
it can be:

— An 8-bit immediate value.
— The content of an 8-bit register.
— The content of a memory location, specified by the indirect addressing

mode using register HL or index registers IX or IY.

The ADD instruction

Let’s look at the ADD instruction, which adds two operands. The following
examples show all the supported addressing modes for the source operand:

ADD A,01h ; sum A with an immediate value (01h)

ADD A,B ; with a register (here: B)

ADD A,(HL) ; with the memory location pointed by HL

ADD A,(IX+16) ; with the memory location pointed by IX +16

ADD A,(IY+32) ; with the memory location pointed by IY +32

This instruction adds the source in question to accumulator A and saves the
result in A. The previous content of A is obviously lost. After the operation,
the Carry flag is set to one if there has been a carry in the operation. If not,
it is set to zero.

The ADC instruction

ADC is an important variation on the ADD instruction. It takes into account
the Carry flag value during the sum. When it makes the sum, it also adds the
Carry flag value, which comes from a previous operation. In other words, it
adds the specified source to accumulator A plus 1 if the Carry flag is already
at one, and puts the result in A.

As with ADD, the previous content of A is lost and the Carry flag is set to 1
in the output if there is a carry in this operation. The previous value of the
Carry, which was used to make the calculation, is overwritten.

The use of ADD and ADC with indirect addressing, an example

Let’s imagine we have extracted a sample of code from a broader program.
This code orders a 16-bit operation where the add is broken down into two
8-bit operations. We need to define two variables OPE A and OPE B. They
contain the 16-bit operands to add. The variable RESULT will hold the result
of the add. See the figure below.
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The left hand figure shows the operation to carry out as we might write it with
pen and paper. First, we must add the low bytes of the operands together.
This gives us the low part of the result. Then we must add the high bytes
along with any carry from adding the low bytes, to calculate the upper part
of the result.

The two bytes that constitute the variables are placed in memory according
to little-endian convention. So if we allocate them in consecutive locations as
of address 8000h, the high and low bytes will appear as shown in the right
hand figure. In the code, they will be defined thusly:

OPE A EQU 8000h ; first operand (16-bit)

OPE B EQU 8002h ; second operand (16-bit)

RESULT EQU 8004h ; result (16-bit)

Notice that attention has been paid to the space each variable occupies. Their
addresses are all at a distance of two locations from each other.

We will use register indirect addressing to access the variables. First we point
to the low part found at the addresses defined above, and then we point to
the high part by incrementing the “pointers” (the registers containing the
variable address).

So firstly, we copy the addresses of the three variables OPE A, OPE B and
RESULT in registers BC, HL and DE respectively.

ADD16: LD BC,OPE A ; BC addresses the low part of OPE A

LD HL,OPE B ; HL addresses the low part of OPE B

LD DE,RESULT ; DE addresses the low part of RESULT

Now we use these registers as pointers to the variables. Let’s move the low
part of OPE A in the accumulator, then we add the low part of OPE B. The
result is then saved in the low part of the variable RESULT.

LD A,(BC) ; get the low part of variable OPE A

ADD A,(HL) ; add it to the low part of variable OPE B

LD (DE),A ; save the partial result (low part)

Note that any carry generated by the add is now in the Carry flag. We will use
it soon to execute the sum of the high parts. To do this, we must increment
all our pointers by one, that is registers BC, HL and DE, which will address
the high part.
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INC BC ; update the pointers to the high part

INC HL

INC DE

Finally, we repeat an adding sequence similar to that of the previous one
except that the registers now target the high part of the variables and the
ADC substitutes the ADD so that it also sums any carry from the low part.

LD A,(BC) ; get the high part of variable OPE A

ADC A,(HL) ; add it to the high part of variable OPE B

LD (DE),A ; save the high part of the final result

Remember that this example was meant as an introduction. In fact, the pro-
cessor has 16-bit arithmetic instructions that would make it possible to solve
the task more easily, as we will see next.

The SUB instruction

Let’s look at the SUB instruction, which subtracts two operands. The first is
always the accumulator and the second is defined by the programmer and can
be of the same types as those meant for the ADD instruction.

SUB subtracts the specified source from register A and overwrites it with the
result (the previous content of A is overwritten). If the subtract has generated
a borrow, it is put in the Carry flag7.

The following examples are similar to those shown for ADD and they list the
acceptable addressing modes.

SUB 39h ; subtract (from register A) an immediate value (39h)

SUB E ; the content of a register (here: E)

SUB (HL) ; the memory location pointed by HL

SUB (IX+22) ; the memory location pointed by IX +22

SUB (IY+44) ; the memory location pointed by IY +44

We skip the identification of the first operand because this is implied by
the mnemonic code SUB. The first operand of a SUB instruction is always
implicitly accumulator A. As we shall soon see, the first operand can also be
register HL for the ADD and ADC instructions.

The SBC instruction

In this case as well, we have a variant that keeps track of the borrow “in
input”, the SBC instruction. This instruction subtracts the specified source
from accumulator A (minus 1 if the Carry flag indicates that there was a
borrow) and saves the result in A.

7 The processor does not have a Borrow flag so the normal Carry flag will be used
in its place.
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As with SUB, the previous content of A is overwritten with the result. The
output borrow is handled as in the previous SUB and the new value of the
Carry flag overwrites the previous one.

The CP instruction

CP (’Compare’) is an important instruction since allows us to perform arith-
metic comparisons. It compares accumulator A to the source indicated by the
operand by actually doing an algebraic subtraction without memorizing the
result. The operands, including the one contained in accumulator A remain
unchanged.

The table below shows the supported addressing modes. They are the same
as those of the SUB with the sole difference being that the result is not saved.

CP 75h ; compare A to the constant 75h

CP B ; to the content of a register (here: B)

CP (HL) ; to the memory location pointed by HL

CP (IX+56) ; to the memory location pointed by IX + 56

CP (IY+12) ; to the memory location pointed by IY + 12

The useful information, (the result of the compare instruction) is memorized
in the Carry, Zero and Sign flags as shown in the table below (‘s’ is the value
of the operand).

Result Carry Zero Sign

A > s 0 0 0

A = s 0 1 0

A < s 1 0 1

Sign is important in compares between signed numbers represented in two’s
complement code. For comparisons between 8-bit unsigned numbers only
Carry and Zero flags matter.

We saw conditional jumps in Chapter 1 (Section 1.4). They are used in the
DMC8 in practically the same way, apart from a few small technical differ-
ences. The bit of program shown below compares the content of a variable
with constant values and decides where to jump according to the result of the
compare. We will examine jumps in detail further ahead in Section 3.3.5.

Examples of how the CP instruction is used

In the sequence of instructions here, the CP instruction is used along with
conditional jumps.

CHECK: LD A,(VAR) ; get the value to be tested

CP 3Ah ; compare register A to the constant 3Ah

JP Z,EQUAL1 ; jump if they are equal
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In the first row, we take a value from the memory (from variable VAR). In the
second, we compare the value, which is now in the accumulator, to a constant.
In the third row, we find a conditional jump at label EQUAL1 (the part of
the code labelled this way is not shown).

The jump is executed only if A = 3Ah, that is if the result of the subtract
between the accumulator and the constant is zero. If it is, the processor ac-
tivates the Zero flag. The first operand of instruction Z asks to jump if the
flag is active. If the result is other than zero, the processor does not jump but
goes on to execute the instruction after the jump. In our case that is another
CP, which compares register A with another constant. See below.

CP 20h ; compare register A to the constant 20h

JP Z,EQUAL2 ; jump if A = 20h

; continue forward if not equal

Remember that the result of the subtraction executed by the CP is not saved
in A. So, the original value to compare is still there, unchanged, as it was taken
from variable VAR. The conditional jump to label EQUAL2 is executed only
if A = 20h, that is if A - 20h gives a result of zero.

The parts of the code labelled EQUAL2 and EQUAL1 are not shown in the
code (it is assumed that they carry out tasks that correspond to the value
identified, but they are irrelevant for the purposes of our discussion).

Now let’s assume that the value in A proves to be different from 20h, so
the processor goes ahead and executes the instruction immediately under the
jump. After we exclude that the the result is equal, we evaluate if the value
is greater or lesser than 20h. Based on the table above, we can use the Carry
flag, which is set to zero if the value in A is greater than the constant, so we
write:

JP NC,MAJOR ; jump to MAJOR if the value is > 20h

MINOR: ... ; go ahead to MINOR if it is < 20h, executing

... ; the corresponding instruction sequence,

JP CONTINUE ; and then skip the code labeled as MAJOR.

MAJOR: ... ; code to execute only if value > 20h,

... ; then, go on with...

CONTINUE: ; the rest of the program

The label MINOR could be omitted because it is not mentioned anywhere.
However, it makes the code more readable because it identifies the part that
manages situations where the value is < 20h. The jump to CONTINUE was
inserted to prevent executing the part of the code related to < 20h, after the
code sequence related to greater than 20h.
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The CPL and NEG instructions

CPL (Complement) and NEG (Negative) are among the 8-bit arithmetic in-
structions. Neither has operands since they work implicitly and only on the
accumulator.

CPL inverts all the bits of A, giving us the “one’s complement” of its content.
This instruction can also be considered from a logical perspective, as a NOT
operator in that it “negates” all the bits in the accumulator. Note that the
CPL instruction does not change the Zero or Carry flag, nor any other flag.

After it inverts all the bits in the accumulator, NEG adds a ‘1’ to the result,
giving us the “two’s complement” of the number in the register. NEG regularly
changes all the flags in the processor.

A simple example showing the functionality of the two instructions is shown
here below. First we calculate two’s complement of a number through a pair
of instructions (it calculates one’s complement for the accumulator, and adds
one), then it takes the partial result and calculates it again but only using the
NEG instruction. By definition, we get the initial number.

LD A,(08000h) ; get a byte from the RAM

CPL ; calculate one’s complement of register A

ADD A,1 ; add ‘1’ to the number in A

NEG ; calculate two’s complement of register A

; obtaining the initial number again

3.3.2.2 16-bit arithmetic instructions

16-bit arithmetic instructions of the DMC8 operate with the HL paired regis-
ter, the IX register or the IY register as an accumulator. The second operand
can only be a 16-bit internal register and not all the combinations are possible.
The DMC8 can add (with or without a carry in input) and subtract (with a
borrow in input). Here are some examples:

ADD HL,BC ; 16-bit addition, HL = HL + BC

ADD HL,HL ; double the content of HL (this is a little trick)

ADD IX,DE ; 16-bit addition, IX = IX + DE

These are not real 16-bit operations because the ALU is 8 bits. The operation
is broken down internally into two consecutive phases, first on the “low” byte
and then on the “high” byte. From the outside, however, this can’t be seen
(other than from the time it takes to execute the operation).

Let’s have another look at the example of an add of 16-bit numbers. For
convenience’s sake, let’s restate the definition of the three variables OPE A,
OPE B and RESULT, each of which is two bytes. As in the previous case,
RESULT accepts the sum of the contents of OPE A and OPE B.
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OPE A EQU 8000h ; first operand (16-bit)

OPE B EQU 8002h ; second operand (16-bit)

RESULT EQU 8004h ; result (16-bit)

We cannot use indirect addressing mode with 16-bit data transfer instructions,
so we use direct addressing mode to acquire data in registers BC and HL.

ADD16: LD BC,(OPE A) ; copy OPE A into register BC

LD HL,(OPE B) ; copy OPE B into register HL

One single instruction makes it possible to calculate the 16-bit sum of the
contents of BC and HL, and overwrite the result in HL. In the end, a 16-bit
data transfer operation copies the resulting sum in RESULT.

ADD HL,BC ; add the two 16-bit operands

LD (RESULT),HL ; save the result in memory

As we can see, 16-bit arithmetic instructions easily carry out their task. They
do not, however, support indirect addressing mode, making them less versatile
to use in a program that executes calculations with a higher number of bits
(32 or 64, for example). This is why is is preferable in this case to work with
8-bit instructions, which are better supported and more complete in terms of
available addressing modes.

Example of a 64-bit adding algorithm

This example is an addition of two integer numbers coded in 64 bits that are
represented by 8 bytes each. The left-hand figure below shows the operation
as we might write it with pen and paper.

First we should add the least significant bytes together and get the least
significant byte of the result. Then we add the bytes of the second column on
the right together, along with the carry from the first column. We reserve the
carry produced here for column 3. We continue moving to the next column
and repeating this operation until we get to the last column on the left, which
has the most significant bytes.

Let’s take the example of variable OPE A, which we can place at address
8000h. Let’s assume that the eight bytes it is made of follow little-endian
convention. The bytes will be ordered as shown in the right hand figure,
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with the least significant byte at address 8000h and the others following and
occupying up through location 8007h.

Let’s define the space reserved for the variables in the code, keeping in mind
that their size in the memory is 8 bytes. Let’s also define constant NBYTE,
which we use to count the bytes the operation is broken down into8.

OPE A EQU 8000h ; first operand (8-byte)

OPE B EQU 8008h ; second operand (8-byte)

RESULT EQU 8010h ; result (8-byte)

NBYTE EQU 8 ; number of partial operations

We use indirect addressing mode to address, one by one, the bytes the numbers
are broken up into in the memory. Let’s dedicate registers IX and IY to address
the bytes of the operands and HL for the bytes of the result.

ADD64: LD IX,OPE A ; initialize addresses into IX, IY and HL

LD IY,OPE B

LD HL,RESULT

Let’s add the least significant bytes with an ADD. The carry resulting from
the operation will be saved in the Carry flag.

LD A,(IX) ; execute the first partial sum

ADD A,(IY) ; of the least significant bytes

LD (HL),A ; save the partial result

The next seven bytes that the sum is broken down into are handled by a loop
that repeats seven times by counting on register B. Before starting the loop,
register B is initialized with constant NBYTE and immediately decremented
by one since the least significant byte has already been handled.

LD B,NBYTE ; initialize the loop counter B

DEC B ; B = (NBYTE - 1)

The loop begins with label ADDBYTE. The first three instructions in the
loop increment registers IX, IY and HL so that they address the next byte (of
the operands and result) to handle.

ADDBYTE: INC IX ; update the addresses

INC IY

INC HL

Let’s add the bytes of the operands and the carry resulting from the previous
sum, thanks to the ADC instruction.

LD A,(IX) ; execute the partial sum, taking into

ADC A,(IY) ; account the carry resulting from the

LD (HL),A ; previous sum, and save the partial result

8 This code can easily be modified to support numbers of different dimensions. We
simply need to change constant NBYTE and the way the variables are assigned.
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Finally, let’s go back to the label ADDBYTE and repeat the loop until the
count, done by decrementing register B, goes to zero.

DEC B ; decrement the loop counter and repeat

JP NZ,ADDBYTE ; the loop until finished the partial sums

...

At the end, the program leaves the loop and goes on to execute other instruc-
tions that follow it (but this is beyond the scope of this example and these
instructions are not shown).

3.3.2.3 Logic instructions

The logic instructions for the DMC8 are as follows: AND, OR and XOR9. They
only support 8-bit operations; one of the operands is implicit and is always
accumulator A. The other operand is supported by the same addressing modes
as 8-bit arithmetic instructions. Below is an example for each addressing mode
that we can use with the AND instruction:

AND 01h ; A in AND with the immediate value 0000.00012 (01h)

AND B ; with register B

AND (HL) ; with the memory location pointed by HL

AND (IX+16) ; with the memory location pointed by IX +16

AND (IY+32) ; with the memory location pointed by IY +32

The result of the logical operation always overwrites the operand in accumu-
lator A and is executed “bitwise”. Therefore, it executes 8 identical logical
operations in parallel, one for each bit, and each bit independently of the
others. For example, instruction AND B executes operations thusly:

Analytically:

A7← A7 and B7, A6← A6 and B6, A5← A5 and B5, A4← A4 and B4,

A3← A3 and B3, A2← A2 and B2, A1← A1 and B1, A0← A0 and B0

9 We have already dealt with instruction CPL, which can be used like NOT (re-
member though that CPL does not change flags).
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Examples of the use of the AND instruction

Logic operations change the Zero flag, which is activated if all the bits of the
result are zero. This is why these instructions are very useful to test groups
of bits by “bitmasking”.

Below, we see the first example using the AND instruction:

LD A,(0F000h) ; get a byte from RAM and load it into A

AND 00000111b ; A = (A and 0000.01112). Bits 7, 6, 5, 4 and 3

; are zeroed thanks to the “bitmask” 0000.01112,

; while bit 2, 1 and 0 does not change.

JP Z,ZERO ; test if bits 2, 1 and 0 are all zero

; and then jump to ZERO if they are

In this code, the number loaded in register A is masked in the sense that some
bits are forced to zero (because they are put in AND with the corresponding
0 of the mask), while the others are left unchanged (since they are in AND
with a 1). The following table shows a summary of the operation.

Initial data a7 a6 a5 a4 a3 a2 a1 a0 (the bits contained in A)

Bit mask 0 0 0 0 0 1 1 1 (in AND with A - bitwise)

Result 0 0 0 0 0 a2 a1 a0 (all zero if ‘a2a1a0’ = ‘000’)

Since the masking obtained by the AND has set bits 7, 6, 5, 4, and 3 to zero,
a “zero” result depends on bits 2, 1 and 0 being zero. The conditional jump
instruction then checks if the result of the operation is zero.

In the second example (below) we test the same group of bits (in position 2,
1 and 0), but this time it is to check if they are all at one.

LD A,(0F000h) ; get a byte from RAM and load it into A

CPL ; invert all data bits contained in A

AND 00000111b ; A = (A and 0000.01112). Bits 7, 6, 5, 4, and 3

; are zeroed thanks to the “bitmask” 0000.01112,

; while bit 2, 1, and 0 do not change.

JP Z,ALL1 ; test if bits 2, 1, and 0 are all zero, this

; happens if originally they were all equal to one.

; jump to ALL1 if it is so

As we can read in the comments, the goal is reached by masking in exactly the
same way as the previous case, but after negating all the bits of the original
number as specified in the following table.

Initial data a7 a6 a5 a4 a3 a2 a1 a0 (the bits contained in A)

Inverted data a7 a6 a5 a4 a3 a2 a1 a0 (inverted by the CPL instr.)

Bit mask 0 0 0 0 0 1 1 1 (in AND with A - bitwise)

Risultato 0 0 0 0 0 a2 a1 a0 (all zero if ‘a2a1a0’ = ‘111’)
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This allows us to find zeroes in the accumulator corresponding to the bits that
do not interest us, whereas those we are testing have their original value, but
negated. Overall, the result in A will be zero only if the bits we are interested
in were all originally at one.

Example of the use of the XOR instruction

The XOR instruction is very versatile and can be used to invert the value of
some of the bits in the accumulator, as in the following example. After loading
a constant in the register, we enter an infinite loop where we make the content
of accumulator A exit on a parallel output port at each repetition, but each
time we change the value.

LD A,11110000b ; load a value in A

LOOP: OUT (00h),A ; output the value on the port at address 00h

XOR 00001111b ; A = (A exor 0000.11112). Thanks to the bit

; mask, bits 7, 6, 5, and 4 remain unchanged,

; while bits 3, 2, 1, and 0 are inverted

JP LOOP ; repeat the loop indefinitely

As suggested by the comments inserted in the code, the XOR instruction
inverts the bits corresponding to the ‘1s’ of the mask each time the loop
repeats, as specified in the following table.

Register A a7 a6 a5 a4 a3 a2 a1 a0 (the bits contained in A)

Bit mask 0 0 0 0 1 1 1 1 (in XOR with A - bitwise)

Result a7 a6 a5 a4 a3 a2 a1 a0

The properties of the EXOR operation make it so that the accumulator goes
back to the initial value at the next repetition of the loop as shown below.

Register A a7 a6 a5 a4 a3 a2 a1 a0 (the bits inverted before)

Bit mask 0 0 0 0 1 1 1 1 (in XOR with A - bitwise)

Result a7 a6 a5 a4 a3 a2 a1 a0 (the initial values again)

Thus, the values 1111.00002 and 1111.11112 alternate on the output port.

The examples of the use of logic instructions show some of the particularities
of assembly programming and they merit a brief remark. Clearly, in assembly,
we sometimes use rather involved techniques, which require a bit of attention
to apply.

Yet, they are often necessary to get the best advantage of what the hardware
we are using has to offer. If we are programming in assembly, our goal is to
get the most compact and efficient programs possible. This means that our
programs may become difficult to read or understand. To overcome this, we
try to make the best use of the comments we can insert in our code.
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3.3.2.4 Increment and decrement instructions (8-bit)

The DMC8’s 8-bit increment and decrement instructions work on a register
or a memory location reached by the indirect addressing mode (through HL,
IX or IY). Here are some examples:

INC A ; increment register A

INC B ; increment register B

INC (HL) ; increment the memory location pointed by HL

DEC H ; decrement register H

DEC (IX) ; decrement the memory location pointed by IX

DEC (IY+3) ; decrement the memory location pointed by IY+3

Increment and decrement instructions always raise or lower by one unit. They
affect the Zero and Sign flags but not the Carry flag. Increment and decrement
operations work as cyclic counters, as shown in the following example.

LD C,11111110b ; set register C at the maximum value less one (FEh)

INC C ; increment register C, now it contains 111111112 (FFh)

INC C ; increment register C again, now it contains 000000002

DEC C ; decrement register C, that returns to 111111112 (FFh)

These instructions make it possible, for example, to use the processor’s regis-
ters as loop counters, as shown in the previous examples.

3.3.2.5 Increment and decrement instructions (16-bit)

16-bit increment and decrement instructions can only work on registers BC,
DE, HL, IX and IY, and not on memory locations. Here as well, the increment
or decrement is only by one unit and the operation is cyclical.

INC HL ; increment the paired register HL

DEC IX ; decrement index register IX

16-bit INC and DEC instructions do not affect the flags and we should keep
this in mind when we write programs10, as we will see in the following.

In the example below, we initialize 32 memory locations with a value of 00h
as of location 8000h. Below are the definitions of the address of the beginning
of the RAM area and of the number of locations involved.

MEM EQU 8000h ; memory area (address of the first location)

NLOC EQU 32 ; number of locations

10 This limitation has been kept for the sake of compatibility with the processor the
DMC8 derives from (and the Z80 itself inherited it from the older I8080).
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We use HL indirect addressing mode to write memory locations. So let’s copy
the address of the beginning of the area (MEM) in HL and the number of
locations to count (NLOC) in B.

INIT RAM: LD HL,MEM ; set HL to the memory area address

LD B,NLOC ; set B to the number of locations to initialize

The writing loop in the memory repeats 32 times. We write the constant value
00h into the memory cell pointed by HL. We increment HL immediately after
so that it points to the next location every time the loop repeats.

LOOP: LD (HL),00h ; write the value in memory

INC HL ; increment the address to use

Every time it repeats, we evaluate the number of cells left to write by decre-
menting register B. The processor will leave the loop only when this number
reaches zero and the Zero flag is activated.

DEC B ; decrement the count of cells left

JP NZ,LOOP ; repeat loop until the count will reach zero

In the example shown here below, we execute the same task except that there
are many more locations to initialize (2048), so one 8-bit register won’t be
enough to count them.

Rather than register B alone, we will pair it with register C (as BC, 16-bit
register). Here are the definitions, similar to the previous example.

MEM EQU 8000h ; address of the memory area

NLOC EQU 2048 ; number of locations (greater than 255!)

Let’s limit ourselves to discussing the differences from the previous case. The
number of locations to count (NLOC) is loaded in BC:

INIT RAM: LD HL,MEM ; set HL to the memory area address

LD BC,NLOC ; set BC to the number of locations

This loop is almost identical to the previous case except for the fact that the
number of locations is counted on the 16-bit BC paired register. Since the 16-
bit decrement doesn’t change the flags we have had to do a little trick to force
the Zero flag to change so that the conditional jump can behave as we expect.
The trick can be seen in the two added instructions after the decrement of
BC.

LOOP: LD (HL),00h ; write the constant 00h in memory

INC HL ; increment the address to use

DEC BC ; decrement the count of the locations

LD A,B ; check if BC has been zeroed, executing a

OR C ; bitwise OR between its low and its high part,

JP NZ,LOOP ; and repeat the loop until BC goes to zero



3.3 Types of instructions 227

The solution is relatively simple even though it makes the code more com-
plicated to read. It consists in calculating the OR between the low part C
and the high part B of the paired register BC. Due to the characteristics of
the bitwise OR function the result in the accumulator is only zero overall if
neither of the two halves of the register contains a 1, thus if BC is completely
at zero. The Zero flag is therefore activated by the OR only in this case.

3.3.3 Rotate and shift instructions

Rotate and shift instructions work on 8-bit numbers. The operand can be
any internal 8-bit register or a memory location that is reachable by the
indirect addressing mode (through HL, IX or IY). The list of rotate and shift
instructions can be found in Appendix C, from page 607 to 609.

RLC instructions

RLC (Rotate Left Circular) instructions rotate the bit of the
specified operand to the left, as shown in the left-hand figure.
Bit 7 is also copied in the Carry flag.

This is obviously not an arithmetic carry, but this property is interesting be-
cause it makes it possible to test the flag (with a conditional jump instruction,
we see the examples in the following) and therefore to know the value of the
bit that moves out of bit 7 at each rotate. When eight rotates have been ex-
ecuted, the bits of the operand return to their original position. Below are
some examples of supported addressing modes for instruction RLC.

RLC A ; rotate to the left (8 bits) register A

RLC B ; register B

RLC (HL) ; the memory location pointed by HL

RLC (IX+8) ; the memory location pointed by IX+8

RLC (IY+15) ; the memory location pointed by IY+15

These addressing mode examples are also valid for all the other rotate and
shift instructions examined here so they will not be repeated further on.

The RRC instruction

The RRC instruction (Rotate Right Circular) rotates the bits
of the operand to the right as shown in the left-hand figure.
Bit 0 is copied in the Carry flag.

This instruction also makes it possible to test the value of the bits by rotating
them to the right rather than to the left.



228 3 Programming the DMC8

The RL instruction

The RL instruction (Rotate Left) rotates the bits of the spec-
ified operand toward the left, as shown in the left-hand figure.
This is different from the RLC since it is a 9-bit rotation.

During the rotation, the Carry flag is copied in bit 0 and, after the rotation, it
is overwritten with the value of bit 7. The Carry flag is used as if it were the
ninth bit of the operand. The complete rotation is made up of nine consecutive
instructions of this sort. As we will see in the examples, this instruction is
useful to rotate multiple byte numbers.

The RR instruction

The RR instruction (Rotate Right) rotates the bit of the
operand toward the right. See the left-hand figure. This is
also a nine-bit operation.

The Carry flag preceding the rotation is copied in bit 7 and the flag is over-
written by bit 0 afterward. This instruction is also useful for rotating large
numbers.

The SLA instruction

The SLA instruction (Shift Left Arithmetic) shifts the bit of
the operand to the left and inserts a ‘0’ at the right. Bit 7 is
copied in the Carry flag and is not carried to the other side.

This left shift is defined as “arithmetic” because the operation is equal to
multiplying the initial number by 2.

In fact, after the left shift, all the ‘1s’ of the number are in a position where
their “weight” is twice what it was initially. Any overflow from the calculation
is saved in the Carry flag. Let’s look at the SLA B instruction for example:
if we initially have the number 0001.01002 (= 2010) in register B, all the bits
will be moved to the left after execution, giving us 0010.10002 (= 4010).

The SRL instruction

The SRL instruction (Shift Right Logic) shifts the bits of
the operand to the right and inserts a ‘0’ at the left. Bit 0 is
copied in the Carry and, similar to the previous case, is not
carried to the other side.

The SRA instruction

The SRA instruction (Shift Right Arithmetic) shifts the bit
of the operand to the right but keeps bit 7 unchanged, un-
derstood as the sign bit. Bit 0 is copied in the Carry flag.

This right shift is defined as “arithmetic” because the operation is equal to
dividing the initial number by 2 and it supports negative numbers represented
in two’s complement.
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This is a division because after the instruction is executed, all the digits of the
number are in a position where their weight is cut by half of the initial number,
as they have been right shifted. After execution the Carry flag contains the
rest of the division.

If the initial number is negative, bit 7 is ‘1’. After the shift, it won’t change so
we can say we have “kept the sign”. If we take number 1111.00002 = −1610

into consideration, after the right shift it is 1111.10002, which is −810.

Actually, the SRL instruction also can divide by two, as it is a logic instruction,
but it doesn’t support negative numbers.

The use of the RLC instruction: An example

In the example below, let’s imagine that an output port is connected to eight
LEDs, one for each line, that light up if they are driven by ‘1’. After initializing
A to 0000.00012, let’s make its content go out onto the port. We’ll see only
one light on: the one connected to bit 0.

LD A,00000001b ; load the bit pattern 00000012 in A

LOOP: OUT (00h),A ; output A onto the port at address 00h

RLC A ; rotate left A of one position

JP LOOP ; repeat the loop indefinitely

After executing instruction RLC, the configuration of the bits in A will be
0000.00102 and if we execute instruction OUT again, the LED lit will be the
one in position 1. After 8 rotations, the LED lit will be the one in position 0
again. The rotation on the port will repeat infinitely.

7 6 5 4 3 2 1 0

• • • • • • • ⊗
• • • • • • ⊗ •
• • • • • ⊗ • •
• • • • ⊗ • • •
• • • ⊗ • • • •
• • ⊗ • • • • •
• ⊗ • • • • • •
⊗ • • • • • • •
• • • • • • • ⊗
• • • • • • ⊗ •
. . . . . . . .

The use of instructions SLA and RL: An example

This example has two output ports connected to a total of 16 LED lights.
Here, we cyclically left rotate a lit LED among the 16 positions in sequence,
starting from the configuration shown below.

Port 01h Port 00h
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

• • • • • • • • • • • • • • • ⊗
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Since we have to rotate a ‘1’ to 16 different positions, we’ve chosen to use the
DE register to memorize the state of the LEDs. Let’s start by initializing the
register with a single ‘1’ in position 0, before entering into the loop:

LD DE,01h ; set DE to the initial 16-bit pattern

The first four instructions in the loop copy DE content to the ports, specifically
the high part D on port 01h and the low part E on port 00h.

LOOP: LD A,D ; copy register D onto output port 01h

OUT (01h),A

LD A,E ; copy register E onto output port 00h

OUT (00h),A

The table below shows the last part of the loop.

SLA E ; shift left register E

RL D ; rotate left register D

JP NC, LOOP ; jump if Carry flag is zero, because E is okay

SET 0,E ; else, set to ‘1’ bit 0 of E

JP LOOP ; repeat the loop indefinitely

Before we infinitely repeat the loop with JP LOOP, we need to update the
configuration of the bits in DE by rotating them left.

The issue is that we don’t have a specialized instruction to rotate register DE
and all those available work on 8 bits.

Let’s think about the solution. We have seen that the SLA E instruction moves
all the bits of E to the left, copies bit 7, which goes out to the Carry flag and
places a ‘0’ at the right.

Bit 7 of E still needs to be moved to bit 0 of D. To that end, instruction RL D
retrieves the Carry flag generated by SLA and inserts it at the right of register
D. As the same time, it moves all its bits to the left. The bit that exits from
bit 7 is in turn saved in the Carry flag.

In summary, we have created a left shift of all of register DE, thanks to two
separate 8-bit operations, by means of the Carry flag. Yet, to complete our
task, which requires a complete rotation of DE, the bit that has exited from
bit 7 of register D should be moved in bit 0 of E.

That bit is currently found in the Carry flag and we can determine if it is at
‘0’ through the JP NC,LOOP instruction. If it is at ‘0’, we do not need to
correct bit 0 of E and so we simply jump to the beginning of the loop.
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If it is not at ‘0’, we must bring bit 0 of E to ‘1’. This task is done here by the
SET 0,E instruction (which we will look at in detail further on). The resulting
LED rotation will look like this.

Port 01h Port 00h
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

• • • • • • • • • • • • • • • ⊗
• • • • • • • • • • • • • • ⊗ •
• • • • • • • • • • • • • ⊗ • •
• • • • • • • • • • • • ⊗ • • •
• • • • • • • • • • • ⊗ • • • •
• • • • • • • • • • ⊗ • • • • •
• • • • • • • • • ⊗ • • • • • •
• • • • • • • • ⊗ • • • • • • •
• • • • • • • ⊗ • • • • • • • •
• • • • • • ⊗ • • • • • • • • •
• • • • • ⊗ • • • • • • • • • •
• • • • ⊗ • • • • • • • • • • •
• • • ⊗ • • • • • • • • • • • •
• • ⊗ • • • • • • • • • • • • •
• ⊗ • • • • • • • • • • • • • •
⊗ • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • ⊗
. . . . . . . . . . . . . . . .

The RLCA, RRCA, RLA and RRA instructions

We mention these instructions for the sake of completeness since they were
kept in the set of DMC8 instructions (and Z80 as well) to be compatible with
the I8080 processor. They perform the same functions as the RLC, RRC, RL
and RR instructions, respectively when we set register A as operand.

The RLCA, RRCA, RLA and RRA instructions have the advantage of being
faster because operand A is implicit. At the same time, they are limited by
the fact that they work only on that register. They also only change the Carry
flag while instructions RLC, RRC, RL and RR also affect the Zero flag and
Sign flag.

3.3.4 Bit manipulation instructions

Bit manipulation instructions (BIT, SET and RES) work on a single 8-bit
operand, which can be a register (A, B, C, D, E, H or L), or an indirectly
addressed memory location (through HL, IX or IY). The complete list of
bit manipulation instructions and their addressing modes is on page 610 in
Appendix C.

The BIT instruction

This instruction allows us to test a specific bit of the operand. A constant
indicates the bit’s position (from 7 to 0). The position of the bit is set by
the programmer and cannot be changed while the program is being executed.
Here are a few examples below:



232 3 Programming the DMC8

BIT 0,A ; test bit 0 (LSB) of register A

BIT 3,D ; test bit 3 (counting from right) of register D

BIT 7,(HL) ; test bit 7 (MSB) of the memory location

; pointed by HL

The BIT instruction does not change the content of the register or the memory
location indicated by the operand, but only changes the Zero flag. If the bit
selected turns out to be zero, the flag is set, otherwise it is cleared.

The SET and RES instructions

The other two instructions are SET and RES (Reset). Here as well, the bit is
indicated with a position anywhere from 7 to 0. SET forces the specified bit
to ‘1’. RES, on the other hand, zeroes it. Here are some examples:

RES 0,A ; clear bit 0 (LSB) of register A

SET 7,A ; set to ‘1’ bit 7 (MSB) of register A

RES 5,E ; clear bit 5 (counting from right) of register E

SET 7,(HL) ; set to ‘1’ bit 7 (MSB) of the memory location

; pointed by HL

The use of the BIT and RES instructions: An example

The system has an input port and an output port, both of which are allocated
at address 00h. We acquire a command signal on the line 0 of the input port.
Following the signal’s transition from zero to one, we need to increment the
binary number generated on the output port that is (we imagine) connected
to eight LEDs. The number must be set to zero at system reset and the count
must be cyclical from 0 to 127.

Let’s maintain the state of the count in register B. The state is set to zero at
the start of the program and, since the count must be visible from the output
port, let’s copy it on the port (going through A).

START: LD B,00h ; clear register B, used to store the count state

LD A,B

OUT (00h),A ; output the state on port at address 00h

The specifications require us to reveal the input command’s transition from
0 to 1. To do this, first we need to verify that the input signal is zero and if
it isn’t, wait for it to go to zero.

TEST0: IN A,(00h) ; read the input port at address 00h

BIT 0,A ; test bit 0

JP NZ,TEST0 ; if it is at ‘1’, repeat from TEST0

After the input port is read, we use the BIT instruction to test the value of
the line in position 0. The conditional jump will keep us in the loop on TEST0
until the line goes low. If the line is already low, we go on.
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TEST1: IN A,(00h) ; read the input port again

BIT 0,A ; test bit 0

JP Z,TEST1 ; if it is at ‘0’, repeat from TEST1

This second loop on TEST1 seems identical to TEST0 but with one difference
related to the condition of the jump. This time we stay in the loop if the input
signal is still at zero, while we exit if it has gone to one.

Exiting the second loop means that we have identified the transition from
zero to one so we increment the count while respecting the cyclicity between
0 (0000.00002) and 12710 (0111.11112). A simple solution is to set bit 7 or B
to zero after the increment by using the RES instruction.

INC B ; increment the counter (B), but clear always

RES 7,B ; the bit 7 to grant the cyclicity 0 - 127

The number is then copied onto the port so it is visible and we return to wait
for a new transition by jumping to TEST0.

LD A,B

OUT (00h),A ; display the state (B) on the output port

JP TEST0 ; repeat the loop indefinitely

3.3.5 Jump instructions

We have seen jumps in Section 1.4 and in many examples of programming. In
this section, we will examine them more systematically and considering some
of their applications. The available jump instructions are listed on page 611
in Appendix C.

Jump instructions are very important since they allow the programmer to
explicitly change the order of execution of the instructions that make up the
program. Jump instructions act on the content of the Program Counter (PC),
the register responsible for the sequence of execution of the instructions, as
we have seen in Chapter 1.

3.3.5.1 Unconditional jumps

If we examine the tables of data transfer instructions, the PC would seem
inaccessible to the programmer. We find no explicit instruction in the tables
that allows us to read or write its content. Yet, the execution of a jump consists
precisely in transcribing the address specified by the operand field inside the
PC as if it were a data transfer instruction with the PC as destination. We
have seen that the unconditional jump instruction has the following structure:

JP <address> ; jump to the specified 16-bit address
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The address is often defined through a symbol (JP LOOP for example) to
make the code more readable.

As we have seen, the execution of a jump instruction loads the specified ad-
dress in the PC. The next instruction will be fetched from the location spec-
ified by the <address> field, not from the address right after that of the
current instruction.

The forward jump: An example

For greater comprehensibility, the left hand side of the example has the ad-
dresses of the instructions, as they are allocated in the memory. They are
all merely indicative, irrelevant to our scope, except for the jump instruction.
When the processor reaches address 1100h, it executes an unconditional jump.
The next instruction to be executed is at location 2000h. Everything that we
see in between (in this example, from location 1103h through location 1999h)
is simply ignored by the processor.

Address Instruction ; Comment

10FFh LD A,0 ; (a generic previous instruction)

1100h JP 2000h ; jump to location 2000h

1103h LD B,3Fh ; this instruction is not executed, because

... ; the processor jumped to address 2000h

2000h LD B,A ; from here on it will execute another sequence

...

The backward jump: An example

The example shows an infinite loop created by a backward jump. Every time
the loop is repeated, we make the content of A go out on the port and then
increment it. We use a label to identify the address at the beginning of the
loop, which is the address specified by the operand of the jump instruction.

LD A,0 ; clear A, used as a counter

LOOP: OUT (00h),A ; display the A content on the output port

INC A ; increment A and

JP LOOP ; repeat the loop indefinitely

The instructions between the LOOP label and the JP LOOP jump are re-
peated infinitely. Infinite loops are rare unless we want a program to repeat
cyclically and indefinitely until the system is reset.

Further ahead, we will see that “interruptions” allow us to temporarily sus-
pend the execution of an infinite loop to start working on another program,
as mentioned in Section 2.1.5
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3.3.5.2 Conditional jumps

The most important type of jump from a computational perspective is the
conditional jump, which we were introduced to in Section 1.4.

These jumps are executed by the processor only when the flags have a specific
value. As we have seen, they allow the processor to make decisions. The syntax
of conditional jump instructions is as follows:

JP <condition>,<address>

As with unconditional jumps, the <address> field indicates the location to
jump to. The <condition> syntactically precedes the address and determines
whether the jump will be executed or not at “run-time”. Possible scenarios:

Condition Operation Flag

Z Jump if zero result Z = 1

NZ Jump if not zero result Z = 0

C Jump if Carry C = 1

NC Jump if not Carry C = 0

P Jump if positive S = 0

M Jump if negative S = 1

PE Jump if parity even P = 1

PO Jump if parity odd P = 0

“Parity” indicates if the number of ‘1s’ in the result is odd or even.

Here are some examples of how the most common conditional jumps are used
(based on the Zero and Carry flags):

JP C, 11A0h ; jump to the location 11A0h if Carry Flag is ‘1’

JP NC, 3F00h ; jump to the location 3F00h if Carry Flag is ‘0’

JP Z, 1F00h ; jump to the location 1F00h if Zero Flag is ‘1’

JP NZ, 8000h ; jump to the location 8000h if Zero Flag is ‘0’

A jump is executed only given the right condition, otherwise the processor
goes on to the instruction right after that of the jump.

3.3.5.3 Indirect jumps

Among the instructions the processor can execute are “indirect jumps” (un-
conditional). These instructions make it possible to jump to an address deter-
mined at run-time, that has to be loaded in a 16-bit register ahead of time.
All the possible variations of this instruction are as follows:

JP (HL) ; jump to the address specified in HL

JP (IX) ; jump to the address specified in IX

JP (IY) ; jump to the address specified in IY
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In the types of jumps we have seen before, the address was defined at “design-
time” (when the program was written). The example below shows the basic
operations required to execute an indirect jump, including loading the address
to jump to in a 16-bit register.

LD HL,ADDR ; load the jump address in HL

JP (HL) ; jump to the address just loaded in HL
...

ADDR: NOP ; the sequence of instructions where we jump

Replacing a normal jump with an indirect jump for no particular reason would
be useless and would make writing the program clumsy and convoluted. In-
stead, indirect jumps are advantageous when the next task must be chosen
among a specific number of alternatives based on the results of the operations
done by the program itself. With only a few lines of code, we can efficiently
choose a jump address among the many choices available. It makes sense to
collect them in dedicated “jump tables” as explained below.

Jump tables

Let’s assume that we have written a program that executes a specific algorithm
that returns a number (0, 1, 2...) into register A. We will use this number to
choose the next sequence of instructions to execute.

<instruction> ; the program executes an algorithm that

<instruction> ; returns a number (0,1,2...) in A

LD A,(0F000h) ; the number identifies the sequence to execute

For simplicity’s sake, this example has only four different sequences, but a
real system would clearly have many more. Let’s label the sequences FIRST,
SECOND, THIRD and FOURTH. They can have the following basic struc-
ture:

FIRST: <instruction> ; code sequence handling the FIRST task

<instruction> ; ...

JP CONTINUE

SECOND: <instruction> ; code sequence handling the SECOND task

<instruction> ; ...

JP CONTINUE

THIRD: <instruction> ; code sequence handling the THIRD task

<instruction> ; ...

JP CONTINUE

FOURTH: <instruction> ; code sequence handling the FOURTH task

<instruction> ; ...

CONTINUE: ... ; the program will continue from here on

From the perspective of the assembler, FIRST, SECOND, THIRD and
FOURTH are just four 16-bit constants (four addresses).
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Let’s collect these four constants in the following table and define them by
using the DW directive (introduced in Section 3.1.6):

JTABLE: DW FIRST ; address of the FIRST task (index = 0)

DW SECOND ; address of the SECOND task (index = 1)

DW THIRD ; address of the THIRD task (index = 2)

DW FOURTH ; address of the FOURTH task (index = 3)

The four DWs insert in the ROM four consecutive 16-bit constants that have
the value of the corresponding sequences’ addresses. Let’s use this “jump
table” to retrieve the address to jump to based on the number provided by
the start of the program. We will use this number as an index in the table as
shown in the comments of the code11.

We can see that the first row of the table is placed at the address identified
by the label JTABLE, while the following rows are at addresses that increase
two by two. Therefore, if we keep in mind the index received in A, the address
of every row in the table can be expressed as JTABLE + (2 · <index>).

So, let’s multiply the index by two and transfer it12 to register DE.

SLA A ; multiply the index by 2

LD E,A ; transfer it in register E and clear register D

LD D,00h ; now, the doubled index is in DE

Let’s copy the address of the table in HL and add DE (in a 16-bit operation).

LD HL,JTABLE ; load the jump table address in HL

ADD HL,DE ; add the doubled index to HL

At this point HL has the address of the desired constant to retrieve from the
table. This constant, in turn, must be copied in HL to be able to execute
the desired indirect jump. First, however, we must retrieve the constant by
transferring it to another register (DE for example, as we no longer need its
content) given that we are still using HL.

LD E,(HL) ; copy in E the low part of the constant from

INC HL ; the table and, after incrementing HL,

LD D,(HL) ; copy in D also the high part of the constant

Now, let’s move the content of DE in HL, by using two 8-bit transfers since
there is no suitable 16-bit data transfer instruction to do this.

11 These tables could also be constructed in the RAM so they are replaceable at
run-time. In some high-level languages, (C++, C#, Java, Object Pascal, etc.) we
have the concept of “polymorphism”. Briefly, this is the possibility of a program
or part of a program to assume a different appearance or behavior according to
the circumstances (these subjects are, however, beyond the scope of this book).

12 We cannot transfer the content of an 8-bit register directly into a 16-bit register,
so we copy A in the low part of DE and then we set the high part to zero.
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Finally, we execute the indirect jump through HL.

LD L,E ; copy the address retrieved from the table in
HL

LD H,D

JP (HL) ; Finally, jump to the desired code sequence

The last six lines of code could also be replaced by the five rows here below.
They are a bit more efficient but far less readable.

LD A,(HL) ; copy in A the low part of the constant taken

INC HL ; from the table and, after incrementing HL,

LD H,(HL) ; copy in H the high part of the constant.

LD L,A ; Now we have in HL the complete address and,

JP (HL) ; finally, jump to the desired code sequence

3.3.5.4 Delay loops

Now let’s look at an important conditional jump application: “delay loops”.
Microprocessor systems are often required to generate sequences of control
signals with precise delays between one action and the next. Think of a burglar
alarm: before the alarm goes off, the legitimate owner needs a few seconds to
deactivate it.

To get the processor to let some time pass inert, we must execute a delay
cycle as in this example:

LD C,255 ; initialize C as “loop counter”

LOOP: DEC C ; decrement the counter at every loop

JP NZ,LOOP ; jump backward if the result of decrement

... ; is still not zero, else exit the loop

Before the loop is executed, register C is assigned a value specifically calculated
to make a specific amount of time pass. Afterward, register C, used as a
counter, is cyclically decremented until it reaches zero. At that point, the
time interval will be up and it can go on to execute the next code.

The only target of this bit of code is to make an amount of time go by, to
generate a delay. Let’s try to calculate it.

The instruction tables available in Appendix C show that our instructions
take the following number of clock cycles to be executed:

LD C,255 ; 7 clock cycles

LOOP: DEC C ; 4 cycles

JP NZ,LOOP ; 10 cycles (they don’t depend on the flag value)

Since C is initialized at FFh in the beginning, the loop is executed 255 times.
The total number of clock cycles N is:

N = 7 + 255× (4 + 10) = 3577
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Let’s assume that our microprocessor works with a clock frequency of Fck = 10
MHz. The duration of a clock cycle is then Tck = 1/Fck = 100 nS, so the
amount of time it takes Td is:

Td = N× 100nS = 3577× 100nS = 357700nS = 0, 3577mS

Calculating the number of repetitions

The delay of a loop can be easily and precisely calibrated both by changing
the initial value of C and by adding other instructions in the loop to increase
the amount of time it takes to finish. For example, we can insert two NOPs
and leave the initial value of the counter as X (to be determined).

LD C,<X> ; 7 clock cycles

LOOP: NOP ; 4 cycles

NOP ; 4 cycles

DEC C ; 4 cycles

JP NZ,LOOP ; 10 cycles (they don’t depend on the flag value)

The total number of clock cycles we get (in function of X) is:

N = 7 + X× (4 + 4 + 4 + 10) = 7 + X× 22

So we retrieve the number X to load in the register in function of N:

X =
N− 7

22

If we wanted to get a delay of Td = 0, 5mS, keeping in mind that Tck = 100nS,
we should set the number of cycles as:

N =
Td
Tck

=
0, 5mS

100nS
= 5000

Let’s calculate X to get 5000 clock cycles:

X =
N− 7

22
=

5000− 7

22
≈ 226, 95

rounding up the the nearest integer number, X = 227. If we use this number
to initialize register C, we get:

Td = (7 + 227× (4 + 4 + 4 + 10))× 100nS = 5001× 100nS = 0, 5001mS

which is a very good approximation of the amount of time, just 0, 1µS off.
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Delays using nested loops

If we need more consistent delays, we can rely on techniques that are a bit
more complex, such as nested loops.

LD D,255 ; initialize D as the outer loop counter

;

LEXT: LD C,255 ; initialize C as the inner loop counter

;

LINT: DEC C ; decrement the inner loop counter

JP NZ,LINT ; jump backward to LINT if the counter is not

; zero yet, otherwise exit the inner loop and

DEC D ; decrement the outer loop counter

JP NZ,LEXT ; jump backward to LEXT if it is not zero yet,

... ; otherwise exit the outer loop too and go on

Here above, we can see the loop from the previous example, in the lines in the
center, nested one inside the other with the same format but using a different
register as a counter. In this example, the outer loop executes 255 repetitions.
For each one of these, the inner loop executes its own 255 repetitions. Each
counter is initialized just before the beginning of the corresponding loop.

Intuitively, the approximate overall execution time is given by the product
of the time the internal loop takes multiplied by the number of outer loop
repetitions. The time will ultimately be about proportional to the product of
the values we load in the two counters. In any case, when we do the calculations
in detail, we get:

Td = (7 + (7 + 255× (4 + 10) + 4 + 10)× 255)× 100nS = 91, 5712mS

that is, less than a tenth of a second.

Delay loops with 16-bit counter

Another way to get consistent delays is to use 16-bit registers for loop counts,
as in the following example:

LD BC,65535 ; initialize the 16-bit loop counter (BC)

;

LOOP: DEC BC ; decrement the loop counter

LD A,B ; check if register BC has been zeroed

OR C ; executing an OR operation between B e C

JP NZ,LOOP ; jump backward if BC is not zero,

... ; otherwise go on

In this example, we get the count by using the DEC BC instruction, which
carries out a 16-bit decrement operation. Unfortunately, this type of 16-bit
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instruction does not check the flags, as we know. This means that it is we
who must check that register BC has gone to zero after the decrement. As we
did in a previous example (see Section 3.3.2.5), we need to insert one or more
instructions that change the flags.

We have added a pair of instructions that execute an OR between the high
part B and the low part C of register BC. This OR produces a null result
and activates the Zero flag only when all the bits of register BC are at zero.
Otherwise, the processor continues to repeat the loop. When we do the delay
calculation, this example gives us:

N = (10 + 65.535× (6 + 4 + 4 + 10)) = 1.572.850

Td = 1.572.850× 100nS = 157, 285mS

which is about 1/6 of a second.

Generating very long delays

We can always combine the methods we’ve seen to obtain very consistent
delays. We must note, however, that it is not very efficient to spend a long
time on delay loops for a microprocessor system. This would entail wasting
the potential of the system because we require it to be inert when it could be
doing useful tasks.

As we will see further on in Section 4.6, we can measure even very long
delays by using the technique of interrupts and timers without sacrificing the
potential of the processor.

Checking delay times in the emulator

In Section 2.4.2.3 we introduced the Deeds-McE emulator as a means to check
programs. Let’s open a program in the emulator (see figure below) that in-
cludes a delay loop with a 16-bit counter.



242 3 Programming the DMC8

On the output port, the program visualizes a binary number that increments
at every repetition of the infinite loop beginning at the label COUNT.

Each time the number is written on the port a delay loop is executed. The
loop is repeated 2,500 times. This is almost identical to the previous example;
the only change is the number loaded at the beginning into the register BC.
Therefore, we apply the expression previously used to calculate the duration
(in clock cycles):

N = (10 + 2.500× (6 + 4 + 4 + 10)) = 60.010

We want to use the emulator’s debugger to verify that the delay actually has
this value. We use the commands “Run” and “Clear” on the command bar
(see the figure below, shown by the yellow and green arrows, respectively) and
read the clock cycle count in the field marked by the blue arrow.

Before launching the program, let’s define two “breakpoints” that will allow us
to interrupt execution at pre-established points. As we can see in the following
figure, after selecting the line with the instruction we want to stop at, we use
the context menu indicated by the yellow arrow to assign it a breakpoint.

The figure below shows the two breakpoints highlighted in pink and marked
with a red square. Since we need to measure how long the delay loop is, we’ll
stop program execution at the beginning (location 0106h) and the end of the
same loop (010Fh).

The light blue line indicates the next instruction to execute, which is for now
still the first (at address 0000h).
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We execute the program by clicking on the “Run” command. Emulation stops
when the instruction corresponding to the first breakpoint is fetched (address
0106h at the white arrow in the figure below) but hasn’t yet been executed.

At this point, let’s go to the command bar and click on the “Clear” command
(green arrow in the figure below), to set the field indicated by the light blue
arrow to zero.

The upper field shows the absolute number of clock cycles as of reset, while
the lower field shows the number of clock cycles since it was zeroed.

Let’s press the “Run” command again.
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Program execution restarts and then stops again at the second breakpoint at
the end of the delay loop (see the white arrow). Now, we can see the partial
count of the clock cycles as they appear in the previously zeroed field and can
verify that the number is what we had thought: 60.010.

3.3.6 CPU control instructions

This small group of instructions lets us, for example, enable or disable the
interrupt mechanism and check the state of the processor. The summary table
can be found in Appendix C on page 614.

The EI and DI instructions

The Enable interrupt and Disable interrupt instructions will be examined
within the overall context of the interrupt “mechanism” in Section 4.4. These
are the two instructions:

EI ; enable interrupt mechanism

DI ; disable interrupt mechanism

The NOP instruction

We will include the instruction that carries out no operation at all:

NOP ; no operation

As we saw in Chapter 1, this instruction’s only effect is to increment the
Program Counter (PC) to execute the next instruction. It can also be used as
a 4-clock-cycle delay.

The HALT instruction

This instruction stops the processor:

HALT ; stop program execution and enter the HALT state

The execution of the program is stopped because the internal sequencer is
“frozen” in stand-by. This situation is made evident because the external
activity stops. The CPU can only exit the HALT state through a reset or an
interrupt request.

If the system is reset, the program recommences execution at address 0000h. If
there is an interrupt request, the processor reactivates to execute the handling
routine (as we will see in Section 4.4) and when it finishes that, program
execution recommences as of the instruction after the HALT.
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SCF and CCF instructions

Finally, the following two Carry flag manipulation instructions belong to the
group of CPU control instructions:

SCF ; set Carry flag to ‘1’

CCF ; complement (invert) the Carry flag value

Notice the absence of an instruction that explicitly sets the Carry flag to
zero. In order to do that, we could obviously execute an SCF and a CCF in
sequence or any of the logic instructions (AND, OR or XOR), in that they
set the Carry flag to zero. For example:

OR A ; execute the operation A ← (A or A)

sets the Carry flag to zero without changing the content of the accumulator.

3.3.7 Input/output instructions

Input/output instructions allow the DMC8 to communicate with “outside
devices” by means of the ports we examined in Section 2.3.2. As we have
seen, the processor only uses the 8 least significant wires of the address bus
(A7...A0), so up to 256 input devices and 256 output devices can be handled.

The input/output instructions that we have seen in the examples are shown
here below. We are required to use accumulator A to read or write a port and
the addressing mode is direct. Furthermore, the flags are not changed.

IN A,(<address>) ; read the input port at the specified <address>

OUT (<address>),A ; write the output port at the specified <address>

Here is an example of how IN and OUT instructions are used in this format.
This system has an input port and an output port which are both allocated
at address 00h.

Register B is continually changed according to the value assumed by bit 0 of
the input port: if ‘1’, it is incremented, if ‘0’, it is decremented. The program
visualizes the content of register B on the output port.

START: LD B,0 ; initialize B (the counter state)

LOOP: IN A,(00h) ; read the input port at address 00h

BIT 0,A ; check the requested count direction

JP NZ,INCR ; jump if bit0 = 1, we need to increment the count

DECR: DEC B ; otherwise, decrement the count

JP OUTPUT ; jump and update the output port

INCR: INC B ; increment the count

OUTPUT: LD A,B ; copy the counter state on

OUT (00h),A ; the output port at address 00h

JP LOOP ; repeat the loop indefinitely
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Indirect addressing mode is also available for input and output instructions
where the address of the port is specified by register C (see the table in
Appendix C on page 613).

IN r, (C) ; read the port at the address specified by register C

OUT (C), r ; write the port at the address specified by register C

Using this format, we are no longer required to use the accumulator to read
or write a port since we can use any 8-bit register (r could be A, B, C, D, E,
H or L). Also, the IN instruction affects the flags and this makes it possible
to directly execute tests on the ports.

Here below is an example of the use of the OUT instruction with indirect
addressing mode. The system has 8 output ports allocated at contiguous ad-
dresses from low to high (from 00h to 07h). The program is tasked with
copying the 8 memory locations as of address 8000h on the ports.

We load the address of the first memory cell in HL and that of the first output
port in C. Register B counts the number of repetitions of the loop:

LD HL,8000h ; the address of the table in memory

LD C,00h ; the address of the first port

LD B,8 ; number of ports involved (and memory cells)

In the first part of the loop, we use registers HL and C to address the memory
location we take the number from and the output port where we transcribe
it, respectively.

LOOP: LD A,(HL) ; read the memory location pointed by HL in A

OUT (C),A ; write the value in A to the port pointed by C

So, in the second part of the loop, we update the registers at the addresses of
the next memory and port, and we decrement the loop counter.

INC HL ; point to the next memory location

INC C ; point to the next output port

DEC B ; decrement the loop counter

JP NZ,LOOP ; repeat the loop 8 times, then exit the loop

After the eight memory locations are copied onto the ports, register B goes
to zero, and we exit the loop.

3.3.8 Subprogram call and return instructions

Before discussing subprogram call and return instructions, we need to examine
the function of a special area of RAM memory, the “stack”. To this end, all
of Section 3.4 is dedicated to this category of instructions. The subprogram
call and return instruction table is available in Appendix C on page 612.
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3.4 Subprograms and the Stack area

A subprogram is a program that is executed (or “called”) by another program.
In turn, a subprogram can call yet other subprograms. The main purpose of
grouping one or more specific functions in a subprogram is to make those
functions “reusable”, able to be called multiple times within a program.

A collection of subprograms is called a “library”. Often, programmers create
their own subprogram libraries so that they can avoid rewriting the same
things again and again, and often they reuse them in different projects and
programs.

So that a subprogram can be called by another program (or subprogram), a
few simple rules need to be followed, which we will see further on. These rules
depend on the way in which the subprograms are implemented in the hardware
of the specific processor being used. We will examine from the perspective
of the processor how a program can “call” a subprogram and how this can
consequently “return” to the caller.

Before we proceed, we need to examine how the processor handles a special
area of RAM memory called the “Stack” (as in stack of books).

3.4.1 The Stack and the Stack Pointer

The Stack is a privileged area of the memory where the microprocessor can
temporarily save and retrieve various types of data. To be clear, this area is
special only because of the use we make of it; from a hardware point of view
it has nothing new, an area in RAM memory that the programmer chooses.

The basic difference in using normal memory and using the stack area is in the
order used to read and write data. We normally access memory by indicating
the operation we want to execute: read or write, and the location address is
specifically chosen by the programmer as we have seen. For example:

LD (8000h),A ; write A into a specific memory location

LD A,(8000h) ; retrieve data from the same memory location

In some cases, however, it is convenient not to have to know the specific
address of the data to transfer. We don’t have to if the processor has an
automatic mechanism that decides the memory addresses for us while we
only deal with the data to transfer.

A stack allows us to organize objects one on top of the other and worry about
nothing more than the sequence for storing and recovering them. The apparent
disadvantage is the fact that we cannot immediately access objects under the
top of the stack.
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To keep the stack from toppling over, we would always have to put and retrieve
the object on top13.

In some cases, however, this apparent limitation can be an advantage. We will
soon see that it is very convenient to temporarily store data at the top of the
stack and then retrieve them when necessary.

The processor provides us with internal hardware devices that automatically
take care of the reading and writing of data on the Stack. This support frees
us from having to deal with the specific memory location addresses where the
data are written. We only need to pay attention to the order we put the data
in so we can take them out in the opposite order.

Inside the processor there is a dedicated 16-bit register called the Stack Pointer
(SP), and it is appropriately handled by the sequencer, which can increment
it and/or decrement it. When the processor accesses the Stack memory area,
it sends the content of register SP on the address bus to select the memory
cell to be read or written. The processor contains the Stack Pointer and its
handling logic, while the RAM connected to the processor contains the Stack
area (see the figure below)14.

Since the memory area used for the Stack is not predefined, programmers are
free to choose any available part of the system RAM to be used as the Stack
area. To do this, they simply need to insert the initialization of register SP
among the first program startup instructions.

LD SP,<nn> ; initialize the Stack Pointer at the address <nn>

When programmers assign an initial value to register SP, they are defining the
bottom of the memory area dedicated to the Stack. The figure shows that SP
has been initialized at address FFFFh, the last location possible in the RAM.
Please note that we have actually only defined the location we will start filling
it at (backward), not the size of the area. We will discuss this further on.

The processor uses the Stack area automatically for calling subprograms and
for returning from those calls. The Stack area is also automatically used by the
interrupt mechanism. However, programmers can use some specialized data
transfer instructions such as PUSH and POP, which make it possible to work
directly with the Stack area.

13 A memory structure handled thus is called LIFO (Last In, First Out).
14 Make sure not to confuse the terms “Stack” and “Stack Pointer”.
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The PUSH and POP instructions

When programmers want to expressly save data on the Stack and then re-
trieve them, they use the PUSH and POP instructions. The example below
illustrates how these instructions are used:

LD SP,0FFFFh ; initialize the Stack Pointer at FFFFh

...

... ; first part (omitted): the program uses BC and HL

...

PUSH BC ; save the content of register BC on the Stack

PUSH HL ; save the content of register HL on the Stack

...

... ; second part (omitted): BC and HL are overwritten

...

POP HL ; retrieve the previous content of HL from the Stack

POP BC ; retrieve the previous content of BC from the Stack

...

... ; third part (omitted): we return to use the previous

; contents of BC and HL again, just recovered

In this example, as before, we chose to initialize register SP at the address of
the last available RAM location.

Let’s assume that tasks involving registers BC and HL are carried out in the
first part of the program (the example does not show the code of this part).
Let’s further assume that the values obtained in BC and HL are important
because they need to be used again later and they should be preserved.

However, we will need to use BC and HL again in the second part of the
program, but for different purposes. So, their original contents will be over-
written. To use registers BC and HL here, we need to temporarily save their
contents and retrieve them later.

PUSH instructions can help here because they make it possible to save the
values in BC and HL at the top of the Stack without using expressly defined
variables in the memory, thus avoiding having to choose and assign their
addresses in the program.

The operand of PUSH and POP instructions can only be one of the following:
AF, BC, DE, HL, IX or IY15. These names identify the well known 16-bit
registers, plus AF. This acronym defines the set of accumulator A and of the
F flag register16.

15 The processor only allows us to save 16-bit data in the Stack. Since the memory
locations are 8 bits, whatever is saved is divided into a low byte and a high byte
(following little-endian convention).

16 Writing PUSH AF makes the processor save accumulator A first, followed by the
F flag register at the top of the Stack.
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The figure below deals with the execution of the first three instructions in
our example (the stack is represented in the figure as a sort of glass). On the
left hand side we see the situation downstream of the initialization of register
SP, which targets memory location FFFFh at the bottom of the Stack (still
empty here):

In the middle, the processor has finished executing the PUSH BC instruction.
The processor has used register SP to address the memory over two successive
writes, each time decrementing it by one. The result being that the content of
register BC is copied on the Stack and divided into two parts: B and C. The
top has been raised by two positions and register SP now targets the highest
filled location, FFFDh.

Note that the Stack grows toward high in the drawing but as it does, the
top address goes down. This is a design choice found in almost all existing
microprocessors.

The right hand side of the figure shows the content of the Stack after PUSH
HL is executed. The content of register HL has been copied on the Stack and
register SP now targets the new top of the Stack (SP = FFFBh).

Saving the current content of the two registers now allows us to freely reuse
them for other computing purposes (the second part of the code has been left
out in the example, but we can assume that the content of the two registers
has been overwritten because the code was executed).

In the third part of the program, we need to get the previous contents of the
registers back, so we simply retrieve them from the Stack by executing two
POP instructions and pay attention to the order we take them in.

On the left hand side of the following figure, we see the Stack is in the situation
we left it in before.

In the center, we see that the Stack has been emptied of its two uppermost
bytes by the POP HL instruction, which refreshed the previous content in HL.
After the two reads targeting the memory with register SP are executed, SP
is incremented twice and now targets (SP = FFFDh), the new (lower) top of
the Stack.
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Finally, after POP BC is executed (right hand side of the figure), the previous
values in register BC will also be refreshed and the Stack will be empty again
(SP = FFFFh)17.

Extending this example more generally, if it were necessary to save all the
registers we would need to use all the available PUSH instructions.

PUSH AF ; save the content of all registers in the Stack
PUSH BC ; A and F, BC, DE, HL, IX, IY
PUSH DE ;
PUSH HL
PUSH IX
PUSH IY

After executing any calculation using these registers, we will have to refresh
all of them. Downstream of the execution of all the POP instructions, the
previous condition will be completely restored.

POP IY ; recover the previous contents of
POP IX ; all the registers from the Stack
POP HL
POP DE
POP BC
POP AF

Lastly, let’s go over some important concepts:

— Using PUSH and POP instructions, programmers do not have to explicitly
address the memory locations that are used, that is they don’t have to
define their addresses, except for initializing register SP one time.

— The number of PUSHes executed must be followed by the same number
of POPs. If not, the Stack fills up but doesn’t empty, or vice versa.

— The sequence for retrieval has to be flipped vis à vis the sequence for
saving, given the nature of the Stack itself.

17 Note that POP has not deleted the values that were in the Stack, but they are
not shown in the figure since formally they no longer have meaning (later Stack
operations will overwrite them).
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After the analysis of how it works, we see the Stack’s main application: han-
dling the “call” and the “return” of subprograms.

3.4.2 Subprograms and call and return instructions

As mentioned before, the term “subprogram” means a program that is called
and executed by another program; it, in turn, can also call other subprograms.
Using them gives the following advantages in writing programs:

— a better use of memory space since a task is described by one single
segment of code that can be executed as many times as we like

— a neat improvement in the readability of the source code

— better reusability of the code.

A subprogram can be called by means of the CALL instruction:

CALL <address> ; call the subprogram at the given <address>

To go back to the calling program, the subprogram must be terminated by
the following instruction:

RET ; return to the calling program

How the CALL and RET instructions are used: An example

To explain how these two instructions are used, let’s look at a simple example
that we can imagine was extracted from a larger program. The initialization
of register SP must always be placed at the beginning of the program.

START: LD SP,0FFFFh ; initialize the Stack Pointer

...

Later in the program, the subprogram AVERAGE is called according to the
needs of the calculation.

LD B,34 ; set up the operands in the registers B and C

LD C,15

CALL AVERAGE ; call the subprogram AVERAGE

LD E,A ; the result, returned in A, is copied to register E

...

Afterwards, it is called again with different operands, perhaps multiple times.

...

LD B,56 ; set up new operands in the registers B and C

LD C,22

CALL AVERAGE ; call the subprogram AVERAGE

LD D,A ; the result, returned in A, is copied to register D

...
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The subprogram, shown below, calculates the average of two operands, which
are expected to be found in registers B and C.

AVERAGE: LD A,B ; copy the content of register B in register A,

ADD A,C ; to add it to the content of register C

SRA A ; the result is divided by 2 (with a right shift)

RET ; return to the caller, with the result in register A

As we read in the comments, the result is returned to the caller in the accu-
mulator. Note that the subprogram ends with the RET instruction.

Before it executes the subprogram with the CALL instruction, the calling
program provides the operands to work on by loading their values in the
established registers. When the average is calculated, the RET instruction
makes the control of execution return to the calling program and the instruc-
tion immediately after the CALL is executed. In this example, we assume we
are using the result by copying it in another register of the processor.

In programming jargon, the program “passed the parameters” to the subpro-
gram, and the result was “returned” to the calling program. In our example,
the parameters and the result were passed and returned “by registers”.

The CALL instruction and the Stack

At first glance, the CALL instruction looks like the JP instruction. One sim-
ilarity is that they both accept an address to jump to as an operand. The
CALL instruction, however, is a special jump; before executing the jump to
the subprogram, it saves the “return address” on the Stack.

The figure below gives an example of what the instruction CALL inserts in
the Stack. On the left hand side of the figure, we see the Stack before CALL
is executed, while on the right, we see the stack containing a copy of the PC
(broken into two bytes) after CALL is executed.

By the time the processor saves this information, the PC has already been
updated by the internal sequencer so it contains the address of the first in-
struction after the CALL, which is exactly what needs to be executed after
the return of the subprogram.
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The RET instruction and the Stack

This may be less obvious but the RET instruction is also a special jump. It
has no operands but it is able to jump from the bottom of the subprogram
and return to the calling program. In fact, it retrieves the address of the jump
from the top element on the Stack.

That element is the previously mentioned “return address” that was saved
by the CALL instruction. On the left hand side of the figure below, we see
the Stack, which contains the return address saved before, during the CALL
instruction execution.

The right hand side of the figure shows the result after RET was executed.
The address that was at the top of the Stack has been retrieved and loaded
into the Program Counter. In other words, the processor has jumped to the
instruction following the CALL that called the subprogram.

Can the JP instruction be used to call a subprogram?

Note that the return address that is saved in the Stack is different for every
CALL instruction that calls the subprogram even if it remains the same.
This prevents us from using ordinary JP instructions because they have no
mechanism for identifying the caller.

To demonstrate this, let’s pretend for a moment that we have no CALL or
RET instructions but only ordinary jumps. Let’s modify the previous exam-
ple by jumping to subprogram AVERAGE with a JP instruction. Let’s add
a RETURN1 label, which allows us to return and execute the rest of the
program.

...

LD B,34

LD C,15

JP AVERAGE ; jump to the subprogram AVERAGE

RETURN1: LD E,A ; we add this label to be able to return here

...

Since we have no RET instruction, we need to put a jump at the bottom of
the subprogram that will allow us to go back.
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AVERAGE: LD A,B ; the subprogram is the same as before

ADD A,C ; but the last instruction is different

SRA A

JP RETURN1 ; jump to return to the caller

So far, this code seems to work perfectly. Let’s try to intervene in the second
call and see what happens.

...

LD B,56

LD C,22

JP AVERAGE ; jump to the subprogram AVERAGE

RETURN2: LD D,A ; we add a different label to return here

...

Since we have to return to the instruction after the jump, we need to add a new
label (RETURN2) in front of it, which is obviously different from the previous
one. Unfortunately, we already have a jump at the bottom of the subprogram,
but it’s pointing to RETURN1, the return address of the previous call.

If we only use jumps, we won’t be able to call a subprogram more than once,
undermining one of their main advantages. If we use CALL and RET, however,
we don’t need to worry about who is calling the subprogram or where it has
to return from because the Stack works automatically.

Compliance with common rules, and errors

We have seen that the return address’s storage and recovery mechanism is
completely automatic and transparent for the programmer using the CALL
and RET instructions. Our job is only to allocate the Stack area by initializing
the Stack Pointer.

The programmer’s responsibility begins when it is necessary to also use the
PUSH and POP instructions. There is often the need for a subprogram to
preserve the content of the registers intact.

Consider the following example :

SUBPROG: PUSH BC ; save registers B, C, A and F

PUSH AF

... ; here the subprogram tasks

... ; registers B, C, A and F are used and modified

...

POP AF ; retrieve the previous contents of the registers

POP BC

RET

In subprogram SUBPROG, the content of B, C, A and the flags is saved in
the Stack before the assigned tasks are executed. The tasks have been omitted
here for the sake of simplicity.
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After using these registers to do the calculations, and before returning to the
caller thanks to the RET instruction, the subprogram retrieves the contents
saved in the beginning from the Stack. Thus, the caller finds the content of
the registers intact after the subprogram is executed.

To get a close look at how this program behaves and highlight the dynamics
of the Stack, we need to introduce a generic calling program. We only need
to see how it initializes SP and calls our subprogram.

START: LD SP,0FFFFh ; initialize the Stack Pointer

...

CALL SUBPROG ; call the subprogram SUBPROG

NOP ; note that this NOP represent any

... ; instruction following the CALL

Let’s look at the figure below. On the left-hand side, once register SP is initial-
ized, the Stack is empty. After the subprogram is called, the Stack contains
the return address i.e., the address of the instruction after CALL. At this
point, the processor has made the jump to SUBPROG and executes its first
instruction.

After the PUSH BC instruction is executed, the contents of registers B and C
are found in the Stack in the order in which they are inserted. The following
PUSH AF adds the contents of the accumulator and the flags on the Stack.

At this point, the subprogram performs its task, free to use the registers,
whose contents have been saved on the Stack.

Now let’s look at the conclusion of the subprogram, where the processor ex-
ecutes POP AF. Consider the following figure. From the situation drawn on
the left we move to the second-to-the-left image where the previous contents
of registers A and F are retrieved and restored in the processor.

A similar situation happens for POP BC. After POP BC is executed, (second-
to-the-right image) only the return address that was saved by the CALL
instruction remains in the Stack.

As we have seen, RET simply retrieves it and replaces it in the PC, producing
a jump to the first instruction after the CALL instruction. At this point, the
Stack is empty again.
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To insure that the whole mechanism keeps working, it seems clear that the
programmer needs to respect some general rules:

— A RET (in the subprogram) must correspond to every CALL.

— A POP must follow every PUSH in a mirror pattern.

— The order in which the contents of the registers is retrieved must be flipped
vis à vis the order in which they are inserted.

The example below shows a trivial but serious error:

SUBPROG: PUSH BC ; save registers B, C, A and the flags F

PUSH AF

...

...

POP BC ; is something missing here?

RET

Here, the programmer has forgotten POP AF, provoking some interesting (if
lethal) consequences:

— The saved values of A and the flags are not restored.

— POP BC retrieves what were the contents of A and the flags from the top
of the Stack, not from BC.

— RET retrieves the previous content of register BC from the top of the
Stack instead of the return address from the calling program.

Consequently, program execution continues incorrectly and unpredictably as
of the address in BC since the processor “returns” to the completely wrong
address. This is the most serious consequence of all since it will inevitably
cause the system to crash.

In the following example of a subprogram, the programmer has only made a
mistake in the order the data is retrieved from the registers.

POP BC retrieves the previous contents of A and F from the top of the Stack
and loads them in B and C. At the same time, the previous contents of B and
C are loaded in A and F.
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SUBPROG: PUSH BC ; save registers B, C, A and the flags F

PUSH AF

...

POP BC ; the order of the two POPs is reversed!

POP AF

RET

This inversion will clearly generate errors in the calling program, which will
find the contents of the two registers switched. However, RET will find the
previously saved address at the top of the Stack, as expected.

The following example also has a significant oversight.

SUBPROG: LD A,B

...

...

CALL SUBPROG

...

...

RET

The error is that the programmer called the subprogram from inside itself,
triggering an uncontrolled mechanism of “recursion”. The processor can never
execute RET, because first, it meets the CALL instruction which calls the
subprogram again. The real problem is caused by the Stack: each time CALL
is executed, a new return address is saved at the top of the Stack, so it
continually grows without going back down.

This processor and others like it are not equipped with an automatic check on
the value assumed by the Stack Pointer. This means that the Stack will have
grown so much that it will invade other memory areas. The program could
even overwrite other data areas and make everything crash.

Special uses of the Stack

There are still cases where it could be useful to break the rules, as long as
its done conscientiously. Let’s look at the following example where we have
apparently exchanged the order of the POP instructions. What happens to
registers BC and DE if we call this subprogram?

EXBCDE: PUSH BC

PUSH DE

POP BC

POP DE

RET

Among all the instructions available, there is no instruction to switch the
contents of two 16-bit registers. A judicious use of the PUSH and POP in-
structions can resolve this problem.
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Here, we invert the POPs on purpose to insert the content of DE in BC and
vice versa. At any time we need to switch the content of the two registers, we
execute the following call:

CALL EXBCDE

What follows is another particularly interesting and possibly useful infringe-
ment. Among the jump instructions (see the table on page 611 in Appendix C)
we find the following indirect jump.

JP (HL) ; jump to the location specified by register HL

The only usable registers, however, are HL, IX and IY. BC and DE can’t be
used here. Here is how creativity, along with a masterful use of the Stack,
solves the problem:

PUSH BC ; save the content of register BC on the Stack

RET ; retrieve it as an address and jump there

This pair of instructions inserts two bytes (B and C) in the Stack but then
removes them and so this actually doesn’t change the contents. Instead of
retrieving a return address from the Stack, RET takes the content of BC.
This is intentional and the processor jumps to the address specified by BC
(which was clearly pre-assigned).

As we can see from these examples, it would be easy to mistake some unortho-
dox programming techniques for actual errors. A comment written beside the
code can help clarify our intentions.

Nested calls and the size of the Stack

Since it is possible to call subprograms from inside a subprogram, we want
to know the limits of this, specifically in relation to the Stack area. See this
example of a bit of code that has a small number of nested calls:

MAIN: ... ; this is an infinite loop

CALL SUB 1 ; in which we call the subprogram SUB 1

...

JP MAIN

Subprogram SUB 1, in turn, contains two more calls:

SUB 1: ... ; (subprogram SUB 1)

CALL SUB 2 ; call SUB 2

...

CALL SUB 4 ; call SUB 4

...

RET
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Subprogram SUB 2 also has a call:

SUB 2: ... ; (subprogram SUB 2)

CALL SUB 3 ; call SUB 3

...

RET

Finally, subprograms SUB 3 and SUB 4 do not call any others:

SUB 3: ... ; (subprogram SUB 3)

...

RET

SUB 4: ... ; (subprogram SUB 4 )

...

RET

For every call, a return address is added at the top of the Stack so two more
bytes occupy the area each time. We need to consider that we can do any
conspicuous use of PUSH and POP inside the subprograms. The sequence of
calls in this example is graphically highlighted in the figure below:

If we follow the sequence of calls, we can easily see that as of the MAIN cycle,
the Stack keeps growing and growing from the SUB 1 call to the moment
when the SUB 3 subprogram enters.
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Then, as the program is executed in the order indicated by the arrows, the
subprograms end one by one until they reach the MAIN cycle and we have an
empty Stack again.

In a real program, we might have hundreds of nested calls or more depending
on the type of application. When we also take PUSH and POP instructions
into consideration, the situation can become critical.

Excessive nesting can cause the Stack to overflow from the space the program-
mer had established for it. To be safe, it is always a good idea to provide more
than enough space in the memory for the Stack18, and try to estimate our
needs in terms of nested calls and the use of PUSH and POP instructions.

Conditional CALL and RET instructions

CALL and RET instructions also have conditional form, like conditional jumps
(see the aforementioned table on page 611 in Appendix C). The following
shows an example of a conditional CALL at the result of an operation, and
underneath, the same thing obtained by a normal conditional jump.

Note that the program is easier to read with the conditional CALL.

...

DEC B ; decrement register B

CALL Z,SUBPROG ; if B has been zeroed, call the subprogram

LD D,E ; anyway, continue to execute the program

...

Although the code from the example below is totally equivalent from a logical
point of view, it is written in a contorted way.

...

DEC B ; decrement register B

JP NZ,NOEX ; if B has not been zeroed, skip the CALL

CALL SUBPROG ; otherwise, call the subprogram SUBPROG

NOEX: LD D,E ; anyway, continue to execute the program

...

18 Note that the most complex microprocessors have protection mechanisms for this.
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3.5 Programming examples

The examples in this section allow us to approach assembly programming
through simple exercises19. The first set of examples is inspired by the emu-
lation of the typical logical functions of digital components.

The interesting point of these first examples is reproducing the behavior of
systems with a procedural approach (executing operations one by one in suc-
cession), while their real logical processes are normally parallel (executed by
logic gates and flip-flops).

This requires us to do a sort of “logical breakdown” of their behavior, which
we believe serves a very useful educational purpose. The later examples are
inspired by real systems or parts of them.

3.5.1 Emulation of combinational logic

In a combinational network, the outputs are a direct function of the inputs.
A procedural system that emulates this behavior has to continually check
the inputs and produce corresponding outputs. We will obtain much longer
propagation delays compared to real logical networks, but our intent is only
to reproduce the logical functioning of the network in order to gain confidence
in programming in assembly and its relationship with the system hardware.
See Chapter 2).

3.5.1.1 The NOT gate

This is the network we
will emulate:

An input X and an out-
put X are connected
to the NOT component.
Similarly, we’ll connect
an input X and an out-
put X to our system (see
Section 2.4) through the
two ports IA and OA,
respectively (see the fig-
ure at the right). We’ll
connect the unused in-
puts to ‘0’.

19 Remember that all the programs and networks cited in the text are available on
the Deeds website and ready to analyze, simulate and modify.
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Cyclically, we should (a) read the input, (b) invert the bits we are interested
in, and (c) produce the output. The following is the resulting code:

INP EQU 00h ; define symbolic names to identify

OUTP EQU 00h ; input and output ports (IA and OA)

;

ORG 0000h ; at the reset location:

JP START ; define a jump to the program start

ORG 0100h ; define the program start address

;

START: IN A,(INP) ; read the input port value (0000.000X)

XOR 00000001b ; invert only the bit of interest (bit 0)

OUT (OUTP),A ; send the result to the output port

JP START ; repeat all indefinitely

In the first couple of lines, the symbols INP and OUTP define the addresses of
ports IA and OA. Remember that the RESET hardware makes the processor
execute the instruction found at address 0000h. Here, we have inserted a jump
to our program allocated as of 0100h (for the motivations for this intermediate
jump, see Section 3.1.5).

For information on programming the microcomputer component, refer to Sec-
tion 2.4, specifically page 174.

3.5.1.2 The two-input AND gate

The schematic below
shows an AND gate
with two inputs X, Y
and an output that we’ll
call XY (since it is equal
to X ·Y).

Like in the last case,
we’ll connect the two in-
puts X and Y to our
system at input port IA
and we’ll retrieve out-
put XY from port OA,
as seen in the figure on
the right. In this net-
work as well, we’ll set
the unused inputs to ‘0’.
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For the NOT, we only read the input, negated it and brought the result to
the output. It wasn’t necessary to execute a test on the input. Here, we have
to evaluate the combination of input X and Y and we can use many different
techniques for that.

The first technique

The first technique consists of testing one bit after the other through the BIT
instruction. By evaluating the two values, we can choose between two different
sequences. The code is as follows (the initial definitions are identical to those
of the previous example):

INP EQU 00h ; define symbolic names to identify

OUTP EQU 00h ; input and output ports (IA and OA)

ORG 0000h

JP START

ORG 0100h

;

START: IN A,(INP) ; read X and Y from the input port

BIT 0,A ; check X (on bit 0)

JP Z,OUT0 ; if X = 0 then XY = 0, jump to OUT0

BIT 1,A ; otherwise, if X = 1, check Y (on bit 1)

JP Z,OUT0 ; jump to OUT0 if Y = 0

;

OUT1: LD A,00000001b ; otherwise is X = Y = 1 and hence XY = 1

JP OUTPUT

;

OUT0: LD A,00000000b ; set XY = 0

OUTPUT: OUT (OUTP),A ; copy the result to the output port

JP START ; repeat all indefinitely

We test to see if input X (bit 0) is at ‘0’. If so, we don’t need to check the
other bits and we jump to OUT0. If X = ‘1’, we also have to check input Y
(bit 1). If this bit is at ‘0’, we go to OUT0, otherwise we have identified the
condition X = Y = ‘1’ so the output of AND should be brought high. The
two different configurations of bits are loaded in OUT0 and OUT1, then the
OUT instruction makes them exit on port OA.

The second technique

In the second version of the program, let’s look at both inputs at the same
time through the use of a bitmask (see Section 3.3.2.3). By bitmask, we mean a
configuration of zeroes and ones that we use as an operand in a logic operation
(AND, OR and XOR). This method is usually faster than testing individual
bits because bitmasking generally allows us to evaluate the value of a group
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of bits in one operation. Below, we see the second version (we have omitted
the definitions of the first lines):

START: IN A,(INP) ; read X and Y from the input port

XOR 0FFh ; invert all the bits we have read from input

AND 03h ; thanks to the bitmask, bit 7..2 are zeroed

; Zero flag is set to ‘0’ if !X = !Y = ‘0’,

JP Z,OUT1 ; that is, jump if X = Y = ‘1’

;

OUT0: LD A,00000000b ; otherwise XY is set to ‘0’ in A

JP OUTPUT

;

OUT1: LD A,00000001b ; set XY = 1 in A

OUTPUT: OUT (OUTP),A ; copy the result to the output port

JP START ; repeat all indefinitely

In sum, to verify that bits 0 and 1 are simultaneously at ‘1’, we invert all the
bits read by the port and force the bits we are not interested in to zero. If bits
0 and 1 were both high before these operations, now all the bits of the result
are at zero and the Zero flag allows us to evaluate this condition, so we’ll only
bring the output high if X = Y = ‘1’.

The third technique

The third technique is more compact and uses the shift instruction SRL to
move one of the two bits in the other’s position so that we can directly execute
the AND instruction that is native to the processor. Let’s remember that it
works on 8 bits in parallel but here, we are only interested in the bit in position
0. The code is shown below20:

START: IN A,(INP) ; copy the value of the port INP to A

LD B,A ; copy the bit pattern to B

SRL B ; shift right that bit pattern

AND B ; execute an AND between the two patterns

OUT (OUTP),A ; copy the resulting bit pattern to OUTP

JP START ; repeat all indefinitely

3.5.1.3 The two-input multiplexer

The specifications of the two-channel multiplexer
(shown in the figure at the right) are the following:

• OUT = S1 if SEL= 0

• OUT = S2 if SEL = 1

20 Here as well, we have omitted the first lines of code for brevity. We will do the
same in the future if they are not necessary.
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As in the previous cases, we connect SEL, S1 and S2 in order to bits 0, 1 and
2 of input port IA, and OUT to bit 0 of the output port OA.

The first technique

The first technique is to follow the given specifications to analyze the bits one
by one and generate the output in line with the component’s logical function.
We test the value of selection input SEL and then proceed with the value
of the selected input in mind. Based on this, we jump to OUT0 or OUT1,
depending on the value to generate.

START: IN A,(INP) ; read the input lines

BIT 0,A ; check SEL

JP NZ,S2 ; if SEL = ‘1’ jump to S2

S1: BIT 1,A ; else check the line S1

JP Z,OUT0 ; if S1 = ‘0’ then output = ‘0’

JP OUT1 ; if S1 = ‘1’ then output = ‘1’

S2: BIT 2,A ; check the line S2 (only if SEL = ‘1’)

JP Z,OUT0 ; if S2 = ‘0’ then output = ‘0’

JP OUT1 ; if S2 = ‘1’ then output = ‘1’

OUT0: LD A,00000000b

JP OUTPUT

OUT1: LD A,00000001b

OUTPUT: OUT (OUTP),A

JP START

The second technique

The second technique is much more compact, quicker and takes advantage of
the options the shift instructions offer.

By right shifting the bits read from the input port, we get two simultaneous
intermediate results: (a) the value of SEL moves to the Carry flag and (b) the
value of input S1 is shifted to position 0 (the same as output OUT).

So if the flag (or SEL) is 0, in position 0 we already have the correct value,
which is equal to S1. Otherwise, we right shift A another step to be able to
present the value of S2, this time at the output.

START: IN A,(INP) ; read port, now S2, S1, SEL are in A

SRL A ; SEL value is moved into Carry flag

JP NC,OUTPUT ; if SEL = ‘0’, S1 is already in position 0

SRL A ; otherwise shift S2 in position 0

OUTPUT: OUT (OUTP),A

JP START
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3.5.1.4 The 3-8 decoder

We connect a 3-8 decoder to three in-
puts (C, B and A) and eight output
lines (U7..U0), as shown in the figure at
the right. The outside sets the binary
number CBA, whose value is between
‘0002’ and ‘1112’.

The device activates the output that
corresponds to the CBA number and
leaves the other seven inactive, follow-
ing the truth table on the right.

To emulate the component, we connect
lines C, B and A to the microcomputer’s
input port IA, and we retrieve the other
eight outputs from port OA.

See the figure on the right.
In this case, we assume
that the bits of input
port IA that the decoder
didn’t use (7..3) are con-
nected to the lines used
for other undocumented
tasks, marked here with
hatched lines.

Since we don’t know what
happens on these lines, we
need to make sure that
their value (of no inter-
est here) doesn’t interfere
with evaluating C, B and
A in our code.

In the following, we offer different forms the decoder can take if we use a
different decoding technique for each.

Linear decoding

Linear decoding consists of comparing the given value with all the possible
values, one after the other, in order to identify the corresponding action to
take. This has the advantage of simple, repetitive code but the great disad-
vantage of producing the result in a time linearly dependent on the value
assumed by the input. If the value we are looking for is the first one, the
result comes immediately; if it is the last, the result is produced after testing
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all the ones before it. When the number of possible values is very large, this
is rather inefficient.

At the beginning of the loop, we read the port and mask the bits that don’t
interest us, setting them to zero with an AND instruction. What is left in the
accumulator is the binary number CBA (at a value from 0 to 7).

START: IN A,(INP)

AND 00000111b ; mask the bits that don’t interest us

Then the compares are done one by one. The advantage of using the CP in-
struction is that the accumulator’s value doesn’t change after the comparison.
If the value in A is not ‘0002’, we jump to the next compare and so on.

If the value is ‘0002’ the configuration of the corresponding output is loaded
in A. Then we jump to the OUTPUT label where the accumulator is copied
on the output port and the loop is repeated.

TEST0: CP 0 ; CBA = ‘000’?

JP NZ,TEST1 ; jump if it is not

LD A,00000001b ; U7..U0 output pattern, for CBA = ‘000’

JP OUTPUT
;

TEST1: CP 1 ; CBA = ‘001’?

JP NZ,TEST2 ; jump if it is not

LD A,00000010b ; U7..U0 output pattern, for CBA = ‘001’

JP OUTPUT
;

TEST2: CP 2 ; CBA = ‘010’?

JP NZ,TEST3 ; jump if it is not

LD A,00000100b ; U7..U0 output pattern, for CBA = ‘010’

JP OUTPUT
;

TEST3: CP 3 ; CBA = ‘011’?
...

Clearly, the code is very repetitive, which is why part of has been omitted. The
last compare is with number 6 because number 7 is evaluated by exclusion
(i.e. if we get a negative result on all the other compares, the value must
necessarily be 7).

TEST6: CP 6 ; CBA = ‘110’?

JP NZ,LAST7 ; jump if it is not

LD A,01000000b ; U7..U0 output pattern, for CBA = ‘110’

JP OUTPUT
;

LAST7: LD A,10000000b ; U7..U0 output pattern, for CBA = ‘111’
;

OUTPUT: OUT (OUTP),A

JP START
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Decoding through decision trees

A decision tree allows us to compare bits C, B and A, one by one and produce
the corresponding output. This gives us eight possibilities, as shown below:

Even though the figure representing the decision tree is simple from the logical
point of view, we will have to introduce a large number of jumps when we
translate it into assembly code. This means that this method has the disad-
vantage of requiring a rather involved code.

However, it reaches the goal quickly by doing the same number of tests as
there are bits used to code the number in the input (all of the possibilities
shown here require 3). With linear decoding, we might use (N − 1) tests to
decode a number of inputs no larger than N , whereas here, we need dlog2(N)e
(i.e. the number of bits used to code it).

Clearly, we begin the loop by reading the port. We only need to set the bits
that interest us to zero since the tests are executed on individual bits. In the
following code, we execute the first series of tests with BIT instructions. As
shown in the code itself, a jump occurs if the bit being tested is at ‘1’.

In other words, we only proceed straight ahead without jumping if C, B and A
are all at zero (the furthest left part of the figure above). We get to label A low,
where we set the corresponding output configuration in A (‘000000012’).

START: IN A,(INP) ; get C, B and A lines from the input port

BIT 2,A ; test bit C (bit 2)

JP NZ,C high ; jump if C = ‘1’, otherwise go on

C low: BIT 1,A ; test bit B (bit 1)

JP NZ,B high ; jump if B = ‘1’, otherwise go on

B low: BIT 0,A ; test bit A (bit 0)

JP NZ,A high ; jump if A = ‘1’, otherwise go on

;

A low: LD A,00000001b ; U7..U0 output pattern, for CBA = ‘000’

JP OUTPUT

With a little patience, we can analyze the flow of the code and distinguish all
the possible paths described in the decision tree.
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A high: LD A,00000010b ; U7..U0 output pattern, for CBA = ‘001’

JP OUTPUT

;

B high: BIT 0,A ; test bit A (bit 0)

JP NZ,A high B ; jump if A = ‘1’, otherwise go on

;

A low B: LD A,00000100b ; U7..U0 output pattern, for CBA = ‘010’

JP OUTPUT

A high B: LD A,00001000b ; U7..U0 output pattern, for CBA = ‘011’

JP OUTPUT

;

C high: BIT 1,A ; test bit B (bit 1)

JP NZ,B high C ; jump if A = ‘1’, otherwise go on

B low C: BIT 0,A ; test bit A (bit 0)

JP NZ,A high C ; jump if A = ‘1’, otherwise go on

;

A low C: LD A,00010000b ; U7..U0 output pattern, for CBA = ‘100’

JP OUTPUT

A high C: LD A,00100000b ; U7..U0 output pattern, for CBA = ‘101’

JP OUTPUT

;

B high C: BIT 0,A ; test bit A (bit 0)

JP NZ,A high BC ; jump if A = ‘1’, otherwise go on

;

A low BC: LD A,01000000b ; U7..U0 output pattern, for CBA = ‘110’

JP OUTPUT

;

A high BC: LD A,10000000b ; U7..U0 output pattern, for CBA = ‘111’

OUTPUT: OUT (OUTP),A

JP START

Every path ends with the corresponding bit pattern to produce in the output
and with a jump to the OUTPUT label. Here, where all the paths are together,
the accumulator is copied on the output port with the OUT instruction and
we go back to the beginning of the loop with an unconditional jump.

Decoding by calculations

Decoding by calculations takes advantage of the fact that we have to acti-
vate only one bit at a time in the output. We can set the output pattern
to ‘000000012’ (corresponding to CBA = ‘0002’) and then “calculate” it for
the other cases. Here, we shift this bit configuration to the left with an SLA
instruction, inserted in a loop repeated for the number of times indicated by
the CBA bits.
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After reading the port, we mask the unwanted bits. The resulting number
(CBA) is left in accumulator A (it will be used to count the following loop
repetitions, as described above).

START: LD B,00000001b ; set the default pattern in B

IN A,(INP) ; read the number CBA to decode

AND 00000111b ; mask the bits that don’t interest us and,

; at the same time, modify the Zero flag

LOOP: JP Z,OUTPUT ; jump to OUTPUT if CBA is zero

SLA B ; otherwise, shift the content of B to the left

DEC A ; count the loop repetitions modifying the

JP LOOP ; Zero flag, and then repeat from LOOP

;

OUTPUT: LD A,B ; copy the calculated pattern to the port

OUT (OUTP),A

JP START

As explained in the comments, we prepare the bit configuration in B in case
CBA = ‘000’. The cycle that repeats CBA times (counted by the accumulator)
starts at the LOOP label. If this is zero, or if it goes to zero after a cycle is
repeated, we jump to the OUTPUT label.

If not, we perform a one bit left shift on register B and return to LOOP after
decrementing the count. Finally at the OUTPUT label, the “calculated” bit
configuration in B is copied to the output port.

Decoding by means of tables

When we decode a number by means of tables, we list all the possible outputs
in a table (defined as an array of bytes, using the DB directive). The address
of the table is implicitly defined by the programmer who puts the TABLE
label on the row of its first location.

TABLE: DB 00000001b ; CBA = 000

DB 00000010b ; CBA = 001

DB 00000100b ; CBA = 010

DB 00001000b ; CBA = 011

DB 00010000b ; CBA = 100

DB 00100000b ; CBA = 101

DB 01000000b ; CBA = 110

DB 10000000b ; CBA = 111

After we eliminate the bits that don’t interest us, the number read on the
input port is used as an index for the array.

START: IN A,(INP) ; copy the number to decode to A

AND 00000111b ; mask the bits that don’t interest us; now,

; A contains the index for reading the table
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The address of the row of the table is loaded in the 16-bit HL register. We
add index A to this address so that now HL targets the location to read (the
one that corresponds to the index).

LD HL,TABLE ; HL = base address of the table

ADD A,L ; add index (that is in A) to register L

LD L,A ; and update the content of L; if the add

JP NC,OUTPUT ; has not generated carry, skip

INC H ; the increment of the high part of HL

Register H, the high part of HL, is only incremented if the low part has a
carry when A is added.

If we use the indirect addressing mode, instruction LD A,(HL) loads the ele-
ment we’re looking for in A, which is then sent to the output.

OUTPUT: LD A,(HL) ; now HL points to the desired item

OUT (OUTP),A ; send it to the output (by means of A)

JP START

3.5.2 Calculating a polynomial

We need to write a program that calculates the following polynomial:

OA = 1.5 · IA + 5.0 · IB + 0.75 · IC

Operands IA, IB and IC are
8-bit binary numbers (with
no sign) that are read on the
ports with the same name
(see the figure to the left).
OA, also with 8 bits, is
the result generated on the
output port with the same
name.

The peculiarity of this prob-
lem is that we multiply by
real numbers, which at first
might seem incalculable with
a logic arithmetic unit that
can only work with integer
numbers.

The constants used, how-
ever, are able to be bro-
ken down so that we can do
the calculation using integer
number arithmetic.
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In this example we are only using 8 bits for the calculations, so they will be
approximate. Also, to keep the code legible, no data checks are done before
or after. This means that no checks on possible overflows have been inserted
into the code nor are any remainders from the integer divisions considered.

In the first lines, the code defines the addresses of the four ports used and the
link to the reset location. The program starts with initializing the stack pointer
SP since we use CALL, RET, PUSH and POP instructions. Then we enter
the MAIN loop where subprogram POLY ABC is called. CALL instruction is
used here so that we can write the function of the calculation elsewhere and,
at the same time, make the code more readable.

IAport EQU 00h ; define addresses of input ports IA, IB, IC

IBport EQU 01h

ICport EQU 02h

OAport EQU 00h ; define address of output port OA

;

ORG 0000h

JP START ; link to the reset location

ORG 0100h

;

START: LD SP,0FFFFh ; initialize the Stack Pointer

MAIN: CALL POLY ABC ; main loop

JP MAIN

In programming, a subprogram that executes a specific task, a calculation and
returns the result to the calling program is called a “function”.

So let’s examine the “functions” that carry out the multiplications and are
called inside subprogram POLY ABC.

The following function Mult 1 5 executes the multiplication for 1.5:

Mult 1 5: PUSH BC

LD B,A

SRA B ; B = (A / 2)

ADD A,B ; A = A + B = A + (A / 2)

POP BC

RET

As is shown in the code, the function receives the value to multiply in A and
copies it in B. Here, it divides it by 2 through a right shift then adds it to the
original value. The result appears in A through the following breakdown:

1.5 ·A = (1 + 0.5) ·A = A + A/2

Together, PUSH and POP save the content of register B so that the calling
program finds it intact after the function is executed.



274 3 Programming the DMC8

It might be interesting to think about the magnitude of the approximation
of the calculations our function carries out. The SRA instruction moves the
bit that exits from the right after the shift into the Carry flag. Since this is
a division by 2, that bit is nothing more than the remainder. For simplicity’s
sake, remainders are ignored by the code, so the result is approximate. For
example, if the calculation A = 53 is done by hand, it would give:

1.5 · 53 = (1 + 0.5) · 53 = 53 + 53/2 = 53 + 26.5 = 79.5

Whereas, our program ignores remainders and gives:

1.5 · 53 = (1 + 0.5) · 53 = 53 + b53/2c = 53 + 26 = 79

Clearly, the error in percentages is more relevant in small numbers.

Mult 5 0: PUSH BC

LD B,A

SLA B ; B = (A * 2)

SLA B ; B = (A * 4)

ADD A,B ; A = A + B = A + (A * 4)

POP BC

RET

Here above, the function Mult 5 0 was written to execute a multiplication by
5, broken down as follows:

5 ·A = (4 + 1) ·A = (4 ·A) + A

The function below, Mult 0 75, gives us a multiplication by 0.75 by first mul-
tiplying by 1.5 and then dividing the result by 2:

Mult 0 75: CALL Mult 1 5 ; A = A + A/2

SRA A ; A = (A + A/2) /2 = A/2 + A/4

RET

Finally, let’s look at the subprogram that calculates the polynomial, and reads
the input ports one after the other. After reading port IA, the function to
multiply by 1.5 is called. The partial result is saved in B.

POLY ABC: IN A,(IAport)

CALL Mult 1 5

LD B,A

A similar operation is carried out with the IB port, where another partial
result is added again to B.

IN A,(IBport)

CALL Mult 5 0

ADD A,B

LD B,A
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Then, after also reading IC, the final result is obtained by adding the value
from the last calculation (in A) with the one in B.

IN A,(ICport)

CALL Mult 0 75

ADD A,B

The subprogram finishes by sending the final result, which is in A, directly to
output port OA.

OUT (OAport),A

RET

3.5.3 Timers

We need to write a program that
replicates the functionality of a timer.

In the idle condition of the system, the PULSE output is kept at zero. The
timer waits for the rising edge of input TRIG.

When the rising edge
comes, it activates the
PULSE output for ap-
proximately one second.

After a pulse is gener-
ated, the device goes back
to the idle condition, and
waits for another rising
edge on input TRIG.

While PULSE is acti-
vated, TRIG is ignored.

As shown in the figure
at the right, we use in-
put port IA to receive the
TRIG command on bit 0,
and output OA to drive
line PULSE on bit 0.

We can achieve this with a main loop and a subprogram. First we define
the labels that identify the input and output ports’ addresses (TRIGP and
PULSEP, respectively). Then we find the usual jump from the Reset location
at the start of our program.

TRIGP EQU 00h ; input port IA (TRIG line)

PULSEP EQU 00h ; output port OA (PULSE line)
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ORG 0000h ; link to the RESET location

JP START

ORG 0100h

Since we are calling a subprogram, before we enter the main cycle, we need
to define where the stack area is located by assigning an appropriate RAM
address to the Stack Pointer (here FFFFh).

START: LD SP,0FFFFh ; initialize the Stack Pointer

At the start of the main loop, we set the output port to zero. This operation
serves to initialize the PULSE output after Reset but also to set it to zero
again when the processor returns to the loop’s label Main.

MAIN: LD A,00h ; set the output PULSE to zero

OUT (PULSEP),A

Right afterward, to wait for the rising edge of the clock on line TRIG, we need
to make sure that it is at rest so we introduce two consecutive delay loops.

In the first loop (closed on CHECK), we make sure that TRIG goes to ‘0’ (or
that it’s already at this value). In the second (UPEDGE), we enter if TRIG
is at ‘0’ and this time, we wait for the input to go from ‘0’ to ‘1’.

CHECK: IN A,(TRIGP) ; verify if the TRIG line is at ‘0’

BIT 0,A ; repeat the loop if it is not,

JP NZ,CHECK ; otherwise go on

;

UPEDGE: IN A,(TRIGP) ; this time wait for the rising edge

BIT 0,A

JP Z,UPEDGE ; go on if it is found

At the rising edge, we begin to generate the pulse by activating the PULSE
output. It should be kept high for approximately one second, so we call the
DELAY subprogram that will exit after that amount of time has passed.

LD A,00000001b ; set high the output PULSE

OUT (PULSEP),A

Finally, we return to the beginning of the main loop where, as we know, the
output is set to zero and we start all over again.

CALL DELAY ; wait for about 1 second

JP MAIN ; repeat backward from MAIN

The DELAY subprogram generates a delay by nesting two counter loops (see
Section 3.3.5.4). Assuming the system clock is at 10 MHz, the inner loop (Int-
Loop label) is calculated to take about 100 mS, by counting the number of
repetitions on register DE.

The outer cycle (ExtLoop label) counts on register B and executes the inner
loop 10 times, thus reaching the goal of a one-second delay.
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DELAY: LD B,10 ; execute 10 times the inner loop

;

ExtLoop: LD DE,41667 ; that delays about 1 million clock cycles

IntLoop: DEC DE ; decrement the counter DE and execute

LD A,D ; the OR between the D and E parts of

OR E ; register DE, to affect the Zero flag

JP NZ,IntLoop ; repeat the inner loop

;

DEC B

JP NZ,ExtLoop ; repeat the outer loop

;

RET ; return to the caller

3.5.4 Finite state machines

We want to emulate the functionality of the
synchronous sequential component shown
in the figure at the right.

Outputs W1 and W0 can assume binary val-
ues from ‘00’ to ‘11’.

The component is described in finite state
machine (FSM) terms by the Algorithmic
State Machine (ASM) chart in the figure on
the left.

At every rising edge of the clock CK, the com-
ponent increments or decrements the number
W1W0 based on the value of input UP.

The operation is not cyclical in the
sense that the increments stop at the
top and decrements at the bottom, as
shown in the ASM chart.

For example, if both W1W0 out-
puts are high, we are in state (d). If
UP = 0, the FSM will go to the next
state (c) on the next rising edge of
the clock CK and activate only out-
put W1, otherwise, it won’t change
states.

Let’s connect CK and UP to port
IA, and W1 and W0 to port OA, as
shown in the schematic at the right.
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Make sure not to confuse the processor’s clock and the clock CK of the com-
ponent being emulated. From the perspective of the microcomputer, CK is an
input like the others, connected to pin 0 of IA. Also, CK should have a far
lower frequency than the processor’s clock, to allow the program to manage
its variations.

The program starts with the usual definitions and the link to the Reset.

INP EQU 00h ; input port IA (UP, CK lines)

OUTP EQU 00h ; output port OA (W1, W0 lines)

ORG 0000h

JP START

ORG 0100h

In the first couple lines we have the initialization of the Stack Pointer and
register E. E is loaded with the current contents of the input port (i.e. the
values of UP and CK) and will serve to determine the rising edges of CK.

START: LD SP,0FFFFh ; initialize the Stack Pointer

IN A,(INP) ; read the input port to set

LD E, A ; the initial value of E

For each state of the FSM, there is corresponding piece of code labeled with
the name of that state. Entering state (a), for example, means executing the
following instructions identified by label STATE A:

STATE A: LD A,00000000b ; set W1 = 0 and W0 = 0 in state (a)

CALL CHECK

JP Z, STATE A ; remain in state (a) if UP = 0

; otherwise go on, in state (b)

We will provide a detailed description of the CHECK subprogram a bit further
on. As we will see, CHECK takes care of updating W1 and W0 on the output
port, among other things. To do this, we have passed the state (a) output
values through the accumulator to the subprogram. Based on the ASM chart,
these values must both be ‘0’.

The main task of CHECK, however, is to return to the calling program after
identifying the rising edge of CK. CHECK is also a “function”, and returns
the value of input UP through the Zero flag. This is why we test the flag when
we return from the function and, as described in the ASM chart, we decide
whether to remain in state (a) or continue to the next state (b).

The following code manages states (b), (c) and (d), in a similar way to state
(a), with the necessary variations, following the logic of the ASM chart.

STATE B: LD A,00000001b ; set W1 = 0 and W0 = 1 in state (b)

CALL CHECK

JP Z, STATE A ; return in state (a) if UP = 0

; otherwise go on, in state (c)
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STATE C: LD A,00000010b ; set W1 = 1 and W0 = 0 in state (c)

CALL CHECK

JP Z, STATE B ; return in state (b) if UP = 0

; otherwise go on, in state (d)

STATE D: LD A,00000011b ; set W1 = 1 and W0 = 1 in state (d)

CALL CHECK

JP Z, STATE C ; return in state (c) if UP = 0

JP STATE D ; otherwise remain in state (d)

As soon as the CHECK function is called, it updates the outputs of the current
state (determined by the calling program through the accumulator, as shown
before). Then it waits for the next rising edge of CK. The code of the function
is as follows:

CHECK: OUT (OUTP),A ; generate the state outputs (received in A)

;

LOOP: LD A,E ; get the previous reading of the input port

CPL ; invert its content and

LD B,A ; transfer it into register B

;

IN A, (INP) ; read the input port

LD E, A ; save the reading as next “previous value”

;

AND B ; find the rising edge of CK, checking bit 0

BIT 0,A ; if no positive edge happened,

JP Z,LOOP ; jump backward, otherwise go on and test

BIT 1,E ; the value of UP (modifing the Zero flag)

RET ; return to the caller

The function manages how long to stay in the current state by entering a loop
where it reads the value of line CK on the input port. We exit the loop when
the current value of line CK is ‘1’ and the previous value is ‘0’, that is after
detecting the rising edge.

Looking more closely at this, we see that the previous reading of the port is in
register E. We retrieve it, negate all the bits with a CPL and copy this modified
version in B. We are actually only interested in CK, the bit in position 0.

We get the current configuration of the port in A and we save it in E, so that
at the next loop repetition, it will have what is then considered the “previous
reading”.

The AND between A and B and the next check of the bit in position 0 tell us
if the rising edge has come. In fact, the result of the AND on that bit will only
be ‘1’ if the current CK is at ‘1’ and the previous CK was at ‘0’. Before exiting
and returning to the calling program, the function evaluates the current value
of UP, which is on bit 1 of E, and changes the Zero flag accordingly.
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3.6 Exercises

The digital content pages of the book on the Deeds simulator website have
outlines of the schematics, diagrams and/or programs to complete for each
exercise. Those same web pages also have the files for the solutions, so that
students can check their work.

3.6.1 Emulation of digital components

Note: the components emulated via software are necessarily much slower than
real ones. So, there is no reason to assume that it would be practical to emulate
hardware components like logic gates and counters using microprocessors.
The goal of these exercises is educational. By introducing typical, recurring
problems for most real projects, these exercises teach students to reason like
assembly programmers.

1. Write a program in assembly that emulates an 8-input AND.

Connect the inputs I7..I0 to the
microcomputer’s input port IA
and the output AND8 on bit 0
of output port OA.

2. Write a program in assembly that emulates an 8-input OR.

Connect the inputs I7..I0 to the
microcomputer’s input port IA
and the output OR8 on bit 0 of
output port OA.

3. Write a program in assembly that emulates the AND-OR combinational
network shown in the figure below:

Connect the four inputs W, Z, Y and X to bits 3, 2, 1 and 0 of the
microcomputer’s input IA, respectively, as well as the output OUT on bit
0 of output port OA. Remember that the unused lines of port IA could
assume random values or be connected to something else and for this
reason, appropriate measures need to be taken.
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4. Write a program in assembly that emulates an 8-bit serial-parallel (SIPO)
shift register like the one in the figure at the right.

At each rising front of CK, the con-
tent of the register shifts right by one
bit (from Q7 to Q0), while input IN
is loaded in Q7.

Connect the inputs of clock CK and
line IN to bits 0 and 1 of the mi-
crocomputer’s input port IA, respec-
tively. Also, retrieve lines Q7..Q0
from output port OA.

5. Write a program in assembly that emulates a 16-bit serial-parallel shift
register (SIPO) like the one in the figure at the right.

At each rising front of CK, the con-
tent of the register shifts right by one
bit (from Q15 to Q0), while input IN
is loaded in Q15.

Connect the inputs of clock CK and
the line IN to bit 0 and 1 of the mi-
crocomputer’s input port IA, respec-
tively. Also, retrieve lines Q15..Q8
from output port OA, and lines
Q7..Q0 from output port OB.

6. Write a program in assembly that emulates an 8-bit binary synchronous
up counter that can be pre-loaded. The count takes place on the rising
edge of the clock CK and can be seen on outputs Q7..Q0. The counter
has a synchronous pre-load command, LOAD, which is active high. See
the figure below.

If LOAD is active, number
P7..P0 is loaded in the counter
on the rising edge of CK.

If LOAD is not active, the
counter advances by one unit
on every rising edge of CK (the
count is cyclical so when it gets
to 255, it goes back to 0). Out-
put TC (Terminal Count) is
only activated when the number
at the output is 255.

Connect the inputs of the clock CK and the LOAD command to bits 1
and 0 of the microcomputer’s input port IA, respectively. Also retrieve
lines Q7..Q0 of the counter from output port OA. Pre-load lines P7..P0
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can be connected to the IB input port, while line TC can be generated on
bit 0 of output port OB.

7. Write a program in assembly that creates a 12-bit cyclical, synchronous,
binary up/down counter. The figure below shows a circuit version based
on two 4- and 8-bit counters. The count, which can be seen on outputs
Q11..Q0, happens on the rising edge of the clock CK.

When input CLEAR is activated, it makes it possible to synchronously set
the counter to zero on the rising edge of the clock (unlike input RESET,
which acts asynchronously).

The synchronous DIR input sets the direction of the count (up if it’s high;
down if it’s low).

Connect lines CK, DIR and CLEAR in order, to bits 0, 1 and 2 of the
microcomputer’s input port IA. Retrieve lines Q7..Q0 of the counter from
output port OB and Q11..Q8 from OA.

8. Write a program in assembly that emulates a 4-bit, synchronous Gray
code up counter.

The figure at the right
shows hardware that could
be built, where the outputs
of a pure binary counter
are converted into Gray
code through a combina-
tional network.

The count takes place on
the rising edge of the clock
CK and is generated on
outputs G3..G0.
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Connect inputs CK and ENABLE to bits 0 and 1 of the microcomputer’s
input port IA. Also, retrieve outputs G3..G0 from output port OB.

9. Write a program in assembly that emulates the functionality of a 4-digit
synchronous, cyclical BCD (Binary Coded Decimal) counter. The counter
has a clock CK input. The count advances by one unit at every rising edge
of the clock and has an input CLEAR to initialize it. When CLEAR is at
‘1’, the counter is set to zero on the next rising edge of CK.

Connect inputs CK and CLEAR to bits 1 and 0 of the microcomputer’s
input port IA, respectively. Connect the outputs of the counter to ports
OA and OB in the following way:

Port OA Port OB

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Thousands Hundreds Tens Units

3.6.2 Arithmetic functions

1. Write a program in assembly that can calculate the arithmetic average
of two 32-bit unsigned integer variables. The subprogram receives the
address of the two variables in registers IX and IY, and has to save the
result in a third variable, which is addressed by register HL. We need to
preserve the content of the registers that are used.

Note: the variables are handled in the memory according to “little endian”
convention (see Section 2.1.9).

2. Write a function in assembly that calculates the arithmetic average of
the contents of a table with 256 8-bit unsigned integer numbers whose
address is passed by the calling program into register HL. The result is an
8-bit unsigned integer number, which has been rounded down and must
be returned to register A. The function has to preserve the content of all
of the processor’s registers, except for A.

3. Write a subprogram in assembly that multiplies two 8-bit unsigned integer
numbers.

The calling program passes the two operands to multiply
in registers C and D, while the (16-bit) result must be re-
turned to register HL. Preserve the content of all of the
registers, except HL.

Suggestion: follow the classic algorithm for long multipli-
cation (as if you were doing it with pen and paper), as in
the example on the right (for brevity’s sake, 4 bits).

0110×
1100=
0000

0000-
0110- -

0110- - -
1001000
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4. Write a subprogram in assembly that calculates the function:

Y = d127 · sin( X·360
256 )e

where X is an 8-bit unsigned integer number, passed to the function in
A, where the result is returned. Assume you have a table in the ROM,
which is identified by the TABLE label and only contains the values of the
function’s positive half wave, so that it takes advantage of the symmetry
of the sinusoidal wave. There is no need to preserve the content of the
registers used.

3.6.3 Reusable modules and functions

1. Write a subprogram in assembly that initializes a specific RAM area,
defining the start address (in register HL), the number of locations (in
register C) and the ASCII code to write in the cells (in register A). There
is no need to preserve the content of the registers used.

We also need to write a test program that initializes a certain number N
of RAM locations at reset, according to the table below:

Address N Code

C000h 32 ‘W’

C020h 16 ‘Y’

C030h 8 ‘Z’

C038h 8 ‘K’

In the end, the test program stops the processor with a HALT.

2. Write a program in assembly that rotates a configuration of ‘0s’ and ‘1s’
on an output port, which were acquired from an input port. What follows
are the specifications in detail:

— The seven least significant bits of the output port are rotated cycli-
cally, while the most significant bit remains set at ‘0’, as shown in the
following figure:

— The bit configuration to rotate is copied directly by the 7 least signif-
icant bits of the input port.

— Bit 7 of the input port sets the direction of the rotation; if bit 7 = 1,
it rotates right, MSB → LSB).

— A single rotation step takes about half a second.
— At the end of each complete 7-bit rotation, the program rereads the in-

put port, updates the bit configuration to rotate and sets the rotation
direction.

— The program is executed at system reset.
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3. Use a DMC8 microcomputer (basic version) to create a display composed
by a column of 32 LEDs (a sort of “thermometer-style” linear gauge). The
system receives a number between 0 and 32 on the Data input port and
this number is to be represented by activating a string of LED lights from
the bottom.

The following example shows that port IA has the number 2210 (‘00010110b’)
so, the 22 bottom-most are lit.

The largest number that can be represented is 32, so if a larger number is
presented in the input, it would be reduced (“saturated”) to 32. Assume
you have a decoding table in the ROM memory that is organized as follows
(allocated as of address 0200h):

ORG 0200h

TABLE: DB 00000000b,00000000b,00000000b,00000000b

DB 10000000b,00000000b,00000000b,00000000b

DB 11000000b,00000000b,00000000b,00000000b

DB 11100000b,00000000b,00000000b,00000000b

DB 11110000b,00000000b,00000000b,00000000b

DB 11111000b,00000000b,00000000b,00000000b

DB 11111100b,00000000b,00000000b,00000000b

DB 11111110b,00000000b,00000000b,00000000b

DB 11111111b,00000000b,00000000b,00000000b
... ...omissis ...
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... ...
DB 11111111b,11111111b,11111111b,11111000b

DB 11111111b,11111111b,11111111b,11111100b

DB 11111111b,11111111b,11111111b,11111110b

DB 11111111b,11111111b,11111111b,11111111b

The table has 33 rows, each of which is made up of 4 bytes (32 bits). Each
row contains the configuration of LED lights to activate (or leave off) on
the 4 output ports. The first byte of each row corresponds to port OA
(connected to Led A, in the previous system schematic), and the other
three to ports OB, OC and OD (connected to Led B, Led C and Led D,
respectively).

The first 4-byte row of the table corresponds to the value zero in the input;
the second to value 1 and so on until the last (32).

4. Write a program in assembly that makes four LED lights flash. The lights,
L3, L2, L1 and L0, are connected to bits 3, 2, 1 and 0, respectively, on
output port PLED. The LEDs flash in function of the control signals read
from input port PCTR. The program must start automatically at reset.

The four LED lights must turn on and off cyclically, each with a different
period according to the following table:

LED Period

L3 800 mS

L2 400 mS

L1 200 mS

L0 100 mS

Each light’s on/off cycle has a duty cycle of 50%.

The program cyclically checks bits 7 and 6 of the PCTR port:

— If bit 7 is at ‘0’, the LED lights are off; if it is at ‘1’ they flash.

— If bit 6 is at ‘1’, the flashing times are doubled.

5. The following program generates a square waveform (periodic two-level
signal) on bit 0 of output WAVEP.

WAVEP EQU 00h ; output port OA

ORG 0000h

JP START ; jump to START at reset

ORG 0100h
;

START: LD A,00000000b ; set the initial value of A

MAIN: OUT (WAVEP),A ; send the current value of A to the port

XOR 01h ; invert bit 0 of A

JP MAIN ; repeat the loop indefinitely
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Assuming that the processor’s clock frequency is 10MHz :
a) calculate the period of the square wave that is generated
b) change the program so that the period is 4mS (tolerance: ±0,5%).

6. Write a program in assembly that retransmits a parallel number received
on port IA, in serial format on bit 0 of port OA (output SER in the
schematic below).

The data received on port IA is coded on 7 bits (lines IA6 .. IA0). Line
IA7 is used as a validation signal for the data. A new number is considered
received when IA7 moves from ‘0’ a ‘1’ (the GO button in the schematic).
While the data is being transmitted, we can ignore line IA7, assuming (for
simplicity’s sake) that there will be no new data coming until the current
data is transmitted.

The figure below shows the format of the serial packet:

The specification for this serial transmission format requires:

— a start bit at ‘1’.

— 7 data bits in this order: D0 = IA0, D1 = IA1, .. D6 = IA6.

— parity D7 = (IA0⊕ IA1⊕ IA2⊕ IA3⊕ IA4⊕ IA5⊕ IA6).

— a stop bit at ‘0’.

— a bit-time of 0.1mS.

The program must execute at system reset.

Note: the processor works with a clock of 10 MHz. For the solution, the
bit-times can be obtained in an approximate way.
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3.7 Solutions

3.7.1 Emulation of digital components

1. The configuration of the 8 inputs ‘11111111’ can be easily verified by a
compare, using instruction CP. At the end of that operation, if the zero
flag is activated, we generate a ‘1’ at the output. The details are explained
in the code comments.

INP EQU 00h ; define symbolic names for the input and

OUTP EQU 00h ; output ports (IA and OA, respectively)

ORG 0000h

JP START

ORG 0100h

START: IN A,(INP) ; read the 8 lines from the input port

CP 11111111b ; check if they are all at ‘1’

JP Z,OUT1 ; jump to OUT1 if it is so

OUT0: LD A,00000000b ; otherwise set A to zero and

JP OUTPUT ; jump to OUTPUT to generate ‘0’

OUT1: LD A,00000001b ; set the bit 0 of A at ‘1’

OUTPUT: OUT (OUTP),A ; output the value of A to the port

JP START ; repeat from START indefinitely

2. This code is almost completely identical to the one in the previous exercise.
The only differences are the input test and the condition of the jump right
after. Therefore it is only the different parts that are shown below:

START: IN A,(INP) ; read the 8 lines from the input port

OR A ; check if they are all at ‘0’

JP NZ,OUT1 ; jump to generate ‘1’ if they’re not

The input configuration ‘00000000’, is the only one to give a ‘0’ at the
output. It is verified by means of an OR between register A and itself. This
is more efficient than using CP 00000000b (4 clock cycles rather than 7).

3. Considering the 4 inputs WZYX, the configurations that should generate
a ‘1’ at the output are WZYX = ‘1111’ and WZYX = ‘0011’.

The first solution: First we set the unrelated bits (7, 6, 5 and 4) to zero,
then we do a comparison of the two configurations with a CP instruction.
If at least one of the two corresponds, we generate a ‘1’; if not, we generate
a ‘0’. Read the comments in the code.

INP EQU 00h ; define symbolic names for the input and

OUTP EQU 00h ; output ports (IA and OA, respectively)

ORG 0000h

JP START

ORG 0100h
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START: IN A,(INP) ; read W, Z, Y and X from the port

AND 00001111b ; mask the bits that don’t interest us

CP 00000011b ; verify if W = Z = ‘0’ and Y = X = ‘1’

JP Z,OUT1 ; jump if it is so

CP 00001111b ; verify if W = Z = Y = X = ‘1’

JP Z,OUT1 ; jump if it is so

OUT0: LD A,00000000b ; otherwise set A to zero and

JP OUTPUT ; jump to OUTPUT generating ‘0’

OUT1: LD A,00000001b ; set the bit 0 of A at ‘1’

OUTPUT: OUT (OUTP),A ; output the value of A to the port

JP START ; repeat from START indefinitely

Second solution: The truth table is derived from the combinational net-
work and it has been transcribed in the assembler through the DB di-
rective. The combination of the 4 inputs WZYX is used to address the
TABLE table and retrieve the output to generate. The first two lines of
code have been omitted because they are identical to the previous solu-
tion. This is a very general technique that allows us to create any type of
combinational function.

START: IN A,(INP) ; read W, Z, Y and X from the port

AND 00001111b ; mask the bits that don’t interest us

; A = index to use for reading the table

LD HL,TABLE ; set the table base address in HL

ADD A,L ; add the index in A to L

LD L,A ; and update it. If the addition

JP NC,OUTPUT ; does not generate carry, jump

INC H ; otherwise, increment the high part of HL

OUTPUT: LD A,(HL) ; get the table item (pointed by HL) in A

OUT (OUTP),A ; generate its value on the output

JP START

; ; WZYX
TABLE: DB 00000000b ; 0000

DB 00000000b ; 0001
DB 00000000b ; 0010
DB 00000001b ; 0011 → OUT = ‘1’
DB 00000000b ; 0100
DB 00000000b ; 0101
DB 00000000b ; 0110
DB 00000000b ; 0111
DB 00000000b ; 1000
DB 00000000b ; 1001
DB 00000000b ; 1010
DB 00000000b ; 1011
DB 00000000b ; 1100
DB 00000000b ; 1101
DB 00000000b ; 1110
DB 00000001b ; 1111 → OUT = ‘1’
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4. To emulate a shift register, we need to emulate its state, i.e. the set of val-
ues assumed by its flip-flops (here, we’ll use register B). Below, the input
and output port definitions, the link to the reset and the initialization of
registers SP and B.

INP EQU 00h ; input port IA (lines IN and CK)

OUTP EQU 00h ; output port OA (lines Q7..Q0)

ORG 0000h

JP 0100h

ORG 0100h

LD SP,0FFFFh ; initialize the Stack Pointer and B,

LD B,00h ; that contains the shift register state

In the code, we use instruction SRL to right shift the 8 bits of register B
from Q7 to Q0 at each rising edge of CK. If the current value of input IN
differs from zero then we set bit 7 of B (through instruction SET 7,B).
Every time B changes, going back to the MAIN label, we update the
output port.

MAIN: LD A,B ; send the contents of B to the output

OUT (OUTP),A

CALL CLOCK ; wait for the rising edge of the clock CK

SRL B ; when it arrives, shift right register B and

BIT 1,A ; check bit 1 of A (the input IN)

JP Z,MAIN ; if IN = 0 no action is needed, B7 = 0

SET 7,B ; otherwise, if IN = 1, set B7 = 1

JP MAIN

The rising edge of CK is identified by the CLOCK subprogram, which is
called by the program in the infinite MAIN loop. When the rising edge
appears, the control of execution returns to the caller.

The CLOCK subprogram is set over two loops that check the value of line
CK (bit 0 of A). The first loop checks that line CK has gone back to zero
or if not, waits for it to do so.

The second loop checks that CK goes to 1 and then exits the loop. Also,
input bit IN remains available in A when we go back to the calling pro-
gram.

CLOCK: IN A,(INP) ; the clock line must be at ‘0’

BIT 0,A ; wait for it to go to zero if it isn’t

JP NZ,CLOCK

CK2: IN A,(INP) ; wait for the clock rising edge

BIT 0,A

JP Z,CK2 ; when the rising edge arrives, return to

RET ; the caller (with the IN value in A)
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5. The solution to this exercise is very similar to that of the previous one.
Here, to memorize the state of the component, we use the 16-bit register
HL. Among the definitions, we have: that of the two output ports, the
connection to the reset and zeroing HL.

INP EQU 00h ; input port IA (lines IN and CK)

OUTH EQU 00h ; output port OA (lines Q15..Q8)

OUTL EQU 01h ; output port OB (lines Q7..Q0)

ORG 0000h

JP 0100h

ORG 0100h

LD SP,0FFFFh ; initialize the Stack Pointer and HL,

LD HL,0000h ; that contains the shift register state

At the start of the MAIN loop, we copy the state of the component (HL) to
the output ports. The CLOCK subprogram, which is identical to the one
in the previous exercise (see on page 290), returns the control of execution
to the calling program when the rising edge of CK is detected.

MAIN: LD A,L ; display the low part of the outputs

OUT (OUTL),A

LD A,H ; and then the high part

OUT (OUTH),A

CALL CLOCK ; wait for the rising edge of the clock CK

The right shift in the 16-bit HL register has to be broken down into two
8-bit operations, as shown in the following figure. Note that the boxes
representing individual bits all contain the name of the corresponding
output lines (Q15..Q0).

The SRL H instruction right shifts register H, inserts a ‘0’ at the left and
saves the outgoing bit in the Carry flag. The next instruction, RR L, gets
that bit, inserts it at the left of register L and right shifts all the other
bits (read the comments of the code).

SRL H ; 16-bit right shift broken down into two

RR L ; 8-bit shifts (of register H, and then L)

BIT 1,A ; check the input IN (it is already in A)

JP Z,MAIN ; if IN is not at ‘0’, it is necessary

SET 7,H ; to adjust to ‘1’ the bit 7 of register H

JP MAIN
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After SRL H is executed, bit 7 of H is forced to zero, as we have seen. If
necessary, we bring it to ‘1’ with the SET 7,H instruction in order to copy
the value of input IN. Please refer to the solution of the previous exercise
for the CLOCK subprogram code (on page 290).

6. Let’s define the microcomputer ports needed for the emulation of an 8-bit
synchronous, up binary counter that can be pre-loaded, according to the
exercise:

INP EQU 00h ; port IA: LOAD (bit 1) and CK (bit 0)

PDATA EQU 01h ; port IB: Input lines P7..P0

QOUT EQU 00h ; port OA: Output lines Q7..Q0

TCOUT EQU 01h ; port OB: Output line TC (bit 0)

The program starts by zeroing register C, where we intend to memorize the
state of the counter. Note that this operation corresponds to the zeroing
of the real network’s flip-flops after reset.

ORG 0000h

JP START

ORG 0100h

START: LD SP,0FFFFh

LD C,00h ; initialize register C (the counter state)

In the MAIN loop, we first copy the state on outputs Q7..Q0 (on the
QOUT port). Right after, we call the CLOCK subprogram, which waits for
the rising edge of CK (we’ve omitted the code for this function since it is
identical to that used for the exercise solved on page 290). Returning from
the subprogram, everything that was read by port INP in accumulator A
is available. We are interested in the value of line LOAD.

MAIN: LD A,C

OUT (QOUT),A ; copy the internal state to the outputs

CALL CLOCK

Back in the calling program, at the rising edge of CK, we check the LOAD
command. If it’s active we jump to the DOLOAD label.

Otherwise, the count goes up 1 by incrementing C. We use the CP in-
struction to verify if its content is at the highest value. If (and only if)
this is the case, we activate TC. We then return to the start of the loop
to update outputs Q7..Q0 and wait for a new rising edge of the clock.

BIT 1,A ; if LOAD is active, jump to DOLOAD

JP NZ,DOLOAD ; otherwise go on to count up

;
INC C ; increment the internal state value by one

LD A,C

CP 0FFh ; if C = 255 jump to TC ON to activate

JP Z,TC ON ; the output TC, otherwise...
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TC OFF: LD A,00h ; set TC = ‘0’

OUT (TCOUT),A ; on the port TCOUT

JP MAIN

TC ON: LD A,01h ; set TC = ‘1’

OUT (TCOUT),A ; on the port TCOUT

JP MAIN

We get to the DOLOAD label if the pre-load command is active. In this
case, we acquire P7..P0 from the PDATA input port and copy it to the
internal state (register C). To be consistent, when we go back to the start
of the loop, we update outputs Q7..Q0 as well.

DOLOAD: IN A,(PDATA) ; LOAD is active, so read PDATA port

LD C,A ; update the counter state in C

JP MAIN

7. Following the suggestions in the text of the exercise, let’s define the con-
nections to the microcomputer’s ports.

INP EQU 00h ; input port IA:

; CLEAR (bit 2), DIR (bit 1), CK (bit 0)

OUTH EQU 00h ; output port OA (lines Q11..Q8)

OUTL EQU 01h ; output port OB (lines Q7..Q0)

ORG 0000h

JP START

ORG 0100h

We memorize the 12-bit counter state in the 16-bit register HL.

START: LD SP,0FFFFh ; initialize the Stack Pointer

CLEAR: LD HL,0000h ; and the register HL (the counter state)

At the MAIN label, the infinite loop starts by writing the counter state
on the output ports.

MAIN: LD A,L ; copy the counter state to the ports

OUT (OUTL),A ; (low part)

LD A,H

OUT (OUTH),A ; (high part)

The CLOCK subprogram waits for the rising edge of CK (the subprogram
code is not written here; for that, please see the solution of the exercise
solved on page 290).

CALL CLOCK ; wait for the rising edge of CK

The values of inputs CLEAR and DIR are available in A when the control
of execution goes back to the calling program.
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First, let’s evaluate CLEAR21. If it is active, we jump to CLEAR and zero
the internal state again, then go back to the main loop.

BIT 2,A ; if the CLEAR input is active,

JP NZ,CLEAR ; jump to CLEAR

Depending on the value of DIR, we will take one of two possible routes
in the code that handle the direction of the count by incrementing or
decrementing the content of register HL.

BIT 1,A ; if DIR = ‘1’, jump

JP NZ,GO UP

GO DN: DEC HL ; count down (DIR = ‘0’)

JP CUT

GO UP: INC HL ; count up (DIR = ‘1’)

CUT: LD A,H

AND 00001111b ; make the count both 12-bit and cyclic

LD H,A

JP MAIN

The two routes come together at the CUT label where the 4 most signif-
icant bits of the count are zeroed to make it cyclical at 12 bits. We then
go back and repeat the main loop.

8. As explained in the text, we connect CK to bit 0 and ENABLE to bit 1
of the microcomputer’s port IA. We retrieve outputs G3..G0 from bits 3,
2, 1 and 0 of output port OB.

After we initialize the Stack Pointer, as usual, we set register C, which
contains the state of the counter, to zero.

INP EQU 00h ; port IA: ENABLE (bit 1), CK (bit 0)

OUTG EQU 00h ; port OA: Outputs G3..G0 (Gray code)

ORG 0000h

JP START

ORG 0100h

START: LD SP,0FFFFh

LD C,00h ; set the counter state to zero

In the next MAIN loop, we first call the OUTPUT subprogram, which
converts the state of the counter in Gray code and copies it to the output
port, as we will soon see. On the first loop execution, obviously the output
is zeroed, emulating the component’s behavior at reset.

21 Note that in the universal counters available in the Deeds component library, the
load command LD has priority over the others. Since the input CLEAR controls
the LD inputs of the counters, in assembly code CLEAR must be evaluated before
the DIR input to comply with the priority schedule.
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The CLOCK subprogram waits for the rising edge of CK (the code for
this is identical to the one proposed on page 290). When we return from
the function, the value of input ENABLE is available in register A.

If ENABLE is at ‘0’, the count is disabled so we jump back to the NOCNT
label and wait for the next rising edge of CK without changing the state
of the counter.

MAIN: CALL OUTPUT

NOCNT: CALL CLOCK

BIT 1,A ; if ENABLE = ‘0’, don’t change the state

JP Z,NOCNT ; otherwise go on and increment its value

If ENABLE = ‘1’, we go on to increment the state of the counter. The
calculation is executed in the accumulator since we want to limit the count
to the 4 least significant bits, as explained in the code comments.

LD A,C ; read the state from register C

INC A ; increment the state value,

AND 00001111b ; but limit the count to 4 bits only

LD C,A ; update the state in C

JP MAIN

Now, let’s look at the details of the OUTPUT subprogram. As can be
seen in the circuit in the text of the exercise, a number in Gray code
G3G2G1G0 is obtained by the corresponding binary number Q3Q2Q1Q0
through the following transformation:

G3 = Q3; G2 = Q2 exor Q3; G1 = Q1 exor Q2; G0 = Q0 exor Q1;

The code achieves this by right shifting the state of the counter after
copying it in A and executing an XOR with the unshifted state.

OUTPUT: LD A,C ; copy the state to A

SRL A ; and shift it to the right

XOR C ; convert the state in Gray code

OUT (OUTG),A ; copy the state to the output port OUTG

RET

9. Following the requirements of the exercise, we connect CK to bit 0 and
CLEAR to bit 1 of IA, then we retrieve the 16 outputs of the counter
from ports OA and OB to visualize the number on the BCD displays, as
in the figure below:
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The first part of the code shows the necessary definitions of the ports, the
link to the reset and the initialization of the Stack Pointer.

INP EQU 00h ; port IA: CLEAR (bit 1), CK (bit 0)

OUTH EQU 00h ; port OA (thousands and hundreds)

OUTL EQU 01h ; port OB (tens and units)

ORG 0000h

JP START

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

Before entering the main loop, we zero registers D, E, B and C (which
are used to memorize the state of the count) at label DOCLR. Read the
comments in the code.

DOCLR: LD D, 0 ; D = thousands

LD E, 0 ; E = hundreds

LD B, 0 ; B = tens

LD C, 0 ; C = units

The main loop starts with a call to the OUTPUT subprogram, which
copies the state of the count from registers D, E, B and C to the output
ports (we will look at the details of the subprogram later).

MAIN: CALL OUTPUT ; update the BCD outputs

CALL CLOCK ; wait for the rising edge of CK

BIT 1,A ; check the CLEAR command

JP NZ,DOCLR ; clear the BCD outputs, if requested

As in an earlier exercise (see page 290), the CLOCK subprogram waits for
the rising edge of CK and the value of input CLEAR remains available in
register A when we go back to the calling program.

If CLEAR orders the counter to go to zero, we jump back to DOCLR and
zero the state in registers D, E, B and C, and then repeat the main loop.

If not, we go on with the BCD count. Let’s start with the decimal number
of the units. As we can see in the following listing, we increment C, the
register storing the units, making sure it does not go higher than 9.

ONE: INC C ; increment the units

LD A,C

CP 10 ; check if units go past number 9

JP NZ,MAIN ; if not, go back to MAIN

LD C,0 ; if yes, zero the units and pass to tens

If it doesn’t go past 9, there is no need to increment the most significant
numbers of the count so this incrementing step is finished and we go back
to the start of the main loop. Otherwise, we must set the units to zero
and increment the tens.
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The next steps on incrementing the other numbers, (tens, hundreds, thou-
sands) are basically identical to that of units. After handling the thou-
sands, we go back to the main loop.

TEN: INC B ; increment the tens

LD A,B

CP 10 ; check if tens go past number 9

JP NZ,MAIN ; if not, go back to MAIN

LD B,0 ; if yes, zero the tens and pass to hundreds

HUNDR: INC E ; increment the hundreds

LD A,E

CP 10 ; check if hundreds go past number 9

JP NZ,MAIN ; if not, go back to MAIN

LD E,0 ; if yes, zero E and pass to thousands

THOUS: INC D ; increment the thousands

LD A,D

CP 10 ; check if thousands go past number 9

JP NZ,MAIN ; if not, go back to MAIN

LD D,0 ; if yes, zero the thousands

JP MAIN ; go back to MAIN, ignore last carry

The subprogram OUTPUT has the task of compacting the four BCD
numbers into two bytes, in order to be able to visualize them on the two
output ports OA and OB. For example, the 4 bits of the tens digit are
moved 4 bits over to the left so they can be inserted next to the units
digit. Then, we copy the byte on the corresponding OA port.

OUTPUT: LD A,B ; shift to the left the tens of 4 positions

SLA A ; inserting 4 zeros from the right

SLA A

SLA A

SLA A

OR C ; place the two BCD numbers side by side

OUT (OUTL),A ; display tens and units
;

LD A,D ; shift to the left the thousands of 4

SLA A ; positions inserting 4 zeros from the right

SLA A

SLA A

SLA A

OR E ; place the two BCD numbers side by side

OUT (OUTH),A ; display thousands and hundreds

RET

Note: the code of the CLOCK function has been omitted because it is
identical to that of the previously cited example (see page 290).
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3.7.2 Arithmetic functions

1. The subprogram that executes the arithmetic average of two unsigned 32-
bit integer variables receives their addresses on registers IX and IY. The
variables are memorized according to “little endian” convention.

They are actually organized into four consecutive bytes as in the
figure on the left, which shows a generic 32-bit integer variable
that contains the number 56FA450Bh (broken down into the 0Bh,
45h, FAh, 56h bytes, as of the least significant one).

When we enter the subprogram, we save all the registers used except for
DE and HL. As we will see, the paired register DE is not used, while the
content of HL is restored by the algorithm itself.

MEAN32: PUSH AF

PUSH BC

PUSH IX

PUSH IY

The memory variables can be pointed through the indirect addressing
mode, using IX and IY for the operands, and HL for the result. Clearly,
we assume that IX, IY and HL have been defined by the calling program
before it launches the subprogram.

Let’s do the first of the partial sums, by adding the least significant bytes
together.

LD A,(IX) ; execute the first partial sum

ADD A,(IY) ; of the least significant bytes

LD (HL),A ; save the partial result

The carry is saved in the Carry flag. The other bytes are added in one
loop that repeats three times. Every time the loop repeats, the addresses
in IX, IY and HL are first incremented to target the next bytes. Then,
the sum is executed, as with the first byte except that instruction ADC
keeps the previous carry into account (read the comments in the code).

LD B,3 ; initialize the counter of the partial sums

ADDB: INC IX ; update all the addresses

INC IY

INC HL

LD A,(IX) ; execute the partial sum, taking in

ADC A,(IY) ; count also the previous carry

LD (HL),A ; save the partial result

DEC B ; count the number of repetitions

JP NZ,ADDB ; jump backward if not ended

After the 32-bit sum of the two operands is done, we must divide the
result by two. We can use the shift and rotate instructions, by employing
the indirect addressing mode through HL.



3.7 Solutions 299

First, let’s use instruction SRA to right shift the most significant byte,
which register HL is still pointing to. The bit that exits at the right is saved
in the carry flag. From here, the next rotation instruction RR retrieves the
bit to insert at the left in the rotation of the second byte. The operation
repeats until all the bytes are right shifted. Register HL is decremented
each time and in the end, it goes back to pointing to the least significant
byte of the result, as in the beginning.

SRA (HL) ; 32-bit division by 2

DEC HL

RR (HL)

DEC HL

RR (HL)

DEC HL

RR (HL)

Finally, the subprogram restores the previous content of all the registers
used and then goes back to the calling program.

POP IY ; restore the registers’ previous content

POP IX

POP BC

POP AF

RET

Below, we have a simple test program to check the subprogram we’ve
worked with. It defines VAR RES variable that takes in the result.

VAR RES EQU 8000h ; 32-bit result (4 bytes)

ORG 0000h

JP START

ORG 0100h

It also uses two 32-bit constants as operands, which are defined by the DB
directive. The constants are equal so that the average can be immediately
verifiable since it will be the same as the initial values.

TEST A: DB 0Bh ; 08123F0Bh

DB 3Fh

DB 12h

DB 08h

TEST B: DB 0Bh ; 08123F0Bh

DB 3Fh

DB 12h

DB 08h

After reset, we jump to the START label. The Stack Pointer is initialized
and then the program loads the addresses of the two constants in IX and
IY, and the address of the variable VAR RES in HL.
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START: LD SP, 0FFFFh ; initialize the Stack Pointer

LD IX,TEST A ; address of operand A

LD IY,TEST B ; address of operand B

LD HL,VAR RES ; address of the result

CALL MEAN32

HALT

As we can see, after calling the MEAN32 subprogram, the HALT instruc-
tion stops the processor so that we can read the result in the memory, by
using the Deeds-McE debugger.

After the program is executed, we read a number equal to the constants
defined by the DB directives in the four bytes of RAM as of address 8000h,
as shown in the figure.

2. At the start of the subprogram, we save the registers in use on the Stack.

MEAN256: PUSH BC

PUSH HL

PUSH AF

To calculate the average of the 256 values in the table, we first need to
calculate the sum of the entire table. Each value is at most 255 and in the
worst case, the total could be as much as 255 · 256 = 65280. To express
65280 in binary code, we need dlog2(65280)e = d15.9e = 16 bits.

Since each addend is 8 bits, however, it is quicker to use a little trick: using
register A to accumulate only the 8 least significant bits of the sum. When
we add the elements of the table one after the other in A, we increment
another register (B for example) each time we generate a carry. In the
end, this other register contains the 8 most significant bits of the total
16-bit sum.

Therefore, before we get into the add loop, we set B to zero and copy the
first of the values to add in A. We use the indirect addressing mode to
retrieve it (remember that the specifications require the calling program
to pass the address of the table through register HL).

LD B,00 ; initialize B, the high byte of the sum

LD A,(HL) ; get the first value to add
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We repeat the following loop 255 times seeing that we have already loaded
the first element in A. For every repetition, we increment HL to point to
the next element in the table and we add it to A. Register B is only
incremented (through a conditional jump) if a carry is generated.

LD C,255 ; initialize the loop counter (255 sums)

LOOP: INC HL ; point to the next item of the table

ADD A,(HL) ; add that item

JP NC, NOCY ; jump if there isn’t carry, otherwise

INC B ; increment the high part of the sum

NOCY: DEC C ; decrement the counter

JP NZ,LOOP ; repeat until ended

When the sum is completed, we then divide the result by 256. Note that
dividing an integer by 256 is nothing other than right shifting the number
by 8 positions, so we should right shift register B 8 times and insert each
exiting bit in A.

At the end of the shifting process, this means that all the bits from B are
in A. In our specific case, we only need to take the content of B, which is
perfectly rounded down as required, and copy it directly to A.

Finally, our function restores the previous content of the registers and
goes back to the calling program, as per specifications.

Since it is impossible to only save the flags in the Stack, we also saved A, as
usual. So, to allow the result of the function to return to the accumulator,
B is only copied in A after retrieving the previous content of the flags,
then also refreshing the content of the other registers.

POP AF ; restore the Flags

LD A,B ; copy the result to A

POP HL ; restore the previous content

POP BC ; of registers HL and BC

RET

The following is a possible test program for our function:

OUTP EQU 00h ; output port OA

ORG 0000h

JP START

ORG 0100h

START: LD SP, 0FFFFh ; initialize the Stack Pointer

LD HL,TABLE

CALL MEAN256 ; execute the function

OUT (OUTP),A ; copy the result to the output port OA

HALT
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TABLE, the address of the table of values, is loaded in register HL before
calling function MEAN256. At the end, the result of the function can be
seen on the microcomputer’s output port OA.

The test table defines 256 values that were chosen to obtain an easily
verifiable result. There are 16 identical lines, each defining 16 constants
with the DB directive (the average of the values in a line is 8).

TABLE: DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,8 ; 16 rows as this one

DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,8
...

DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,8

DB 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,8

3. Let’s write the multiplication function by following the classic long multi-
plication algorithm, as suggested. Here, the operation is broken down into
a loop of multiple partial sums. We accumulate the sums in register HL
so that we can find the result at the end of the subprogram, as required
by the specifications.

At the start of the code, we save all the registers that are used, except
HL, which is used to provide the result.

MUL8BIT: PUSH AF ; save the registers in use on the Stack

PUSH BC

PUSH DE

We set B to zero (the high part of BC), since one of the 8-bit operands
is passed to register C. If we take advantage of the processor’s 16-bit
operations, we can consider register BC as a multiplicand and thus, an
addend for partial sums.

Register E is used as a counter for partial sums (it is set to 8 because of
the 8-bit multiplication). When it reaches zero, the final result is ready in
HL, which for now is set to zero.

LD B,00h ; zero B (BC contains the multiplicand)

LD E,8 ; count the 8 partial sums in E

LD HL,0000h ; prepare HL for the partial sums

In the main LOOP loop, a bit from the multiplier in D, starting from
the least significant bit, is evaluated at each repetition. The bits of the
multiplier are inserted in the Carry flag one by one thanks to an SRL
instruction.

Then, the flag is used to decide whether to execute the current partial
sum. A ‘0’ in the i-th bit in the multiplier leads to a partial sum with zero
(which is not executed as we jump to NOSUM). A ‘1’, however, executes
the sum.
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LOOP: SRL D ; move the i-th multiplier bit to the Carry

JP NC,NOSUM ; if = ‘1’ execute the 16-bit partial sum

ADD HL,BC

Remember that register BC initially contains the multiplicand, but BC
is left shifted with each repetition, which prepares it for the next partial
sum (whether it is executed or not).

NOSUM: SLA C ; prepare the multiplicand for the sum,

RL B ; by means of a 16-bit left shift

The loop is repeated until register E (the loop counter) reaches zero. At
that point, the result is ready in HL.

DEC E ; decrement the loop counter

JP NZ,LOOP ; repeat until no more sums to execute

Finally, the registers saved in the Stack are restored and, by executing the
RET instruction, the CPU control returns to the calling program.

END: POP DE ; (if finished, the result is in HL)

POP BC ; restore the registers

POP AF

RET ; end return to the caller

The subprogram can be tested with the following program, which reads
the two operands on the microcomputer’s ports IA and IB, defined here
as INP A and INP B, respectively. This produces the result of the mul-
tiplication on output ports OA (high part) and OB (low part). Here are
the definitions of the ports and the usual link to the reset:

INP A EQU 00h ; port IA: operand A (the multiplicand)

INP B EQU 01h ; port IB: operand B (the multiplier)

RIS L EQU 01h ; port OB: result (low part Q7..Q0)

RIS H EQU 00h ; port OA: result (high part Q15..Q8)

ORG 0000h

JP START

ORG 0100h

The subprogram MUL8BIT is called inside of an infinite loop. Before the
call, we retrieve the two operands from the ports of the microcomputer
and we copy them in C and D, as required by the function.

START: LD SP, 0FFFFh ; initialize the Stack Pointer

MAIN: IN A,(INP A) ; transfer the multiplicand into register C

LD C,A

IN A,(INP B) ; transfer the multiplier into register D

LD D,A
;
CALL MUL8BIT ; call the function
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Since the function returns the result of the multiplication in HL, we copy
the content of these two registers to the output ports.

LD A,L ; copy the result to the output ports

OUT (RIS L),A ; low part (L)

LD A,H

OUT (RIS H),A ; high part (H)

JP MAIN

4. The given function can be pre-calculated by the programmer and memo-
rized in a table. For each value of the input, the subprogram consults the
table and produces the result.

Since trigonometric functions are symmetric, we can save on the size of
the table by memorizing only the 128 positive values of the function. The
table is used directly in the interval of X between 0 and 127.
For all those after, up to 255, we simply need to subtract 128 from X and
read the table, as in the previous case, then invert the sign of the value.

The table will be defined as follows (only a part is shown):

TABLE: DB 000 ; x = 0 (0 degrees)

DB 003 ; x = 1

DB 006 ; x = 2

DB 009 ; x = 3
...

DB 088 ; x = 31

DB 090 ; x = 32 (45 degrees)

DB 092 ; x = 33
...

DB 127 ; x = 63

DB 127 ; x = 64 (90 degrees)

DB 127 ; x = 65
...

DB 092 ; x = 95

DB 090 ; x = 96 (135 degrees)

DB 088 ; x = 97
...

DB 006 ; x = 126

DB 003 ; x = 127

DB 000 ; x = 128 (180 degrees, not used)

First we initialize HL with the address of the table, then we save the value
X in B so that we can later evaluate whether that value was between 0
and 127 (bit 7 = ‘0’) or between 128 and 255 (bit 7 = ‘1’). So we mask
bit 7 so that we always have an index between 0 and 127.

SIN127: LD HL,TABLE ; HL = table’s base address

LD B,A ; save the bit 7 in B, before zeroing it

AND 01111111b ; (the table has the first half-cycle only)
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Now we need to add the value of the index to the address in HL. We add A
to the least significant byte in HL and if the operation produces a carry,
we increment the most significant byte. Now that the target address is
computed, we copy the value that interests us in A.

ADD A,L ; add A to the low part of the base

LD L,A ; address

JP NC,NOCY ; if the sum generates a carry,

INC H ; increment the high part H of the

NOCY: LD A,(HL) ; address; read the value from the table

Finally, we check the original bit 7 from X and if it is zero, we exit (note
the use of the conditional RET instruction). Otherwise, we invert the sign
of the value in A and we leave the function.

BIT 7,B ; check if X is in 0..127; if yes,

RET Z ; exit the function with the value in A

NEG ; otherwise invert its sign and exit the

RET ; function with the negative value in A

Now, let’s write a test program for the function that would be appropriate
for a system like the one in the figure below. A counter allows us to
cyclically send all the possible values of X to the microcomputer. We also
use a DAC to graphically represent the function values over time.



306 3 Programming the DMC8

In the test program, we define the input and output ports, as well as the
link to the reset. Then we read the values from the input port cyclically
and produce the result of the function on the output port.

INP EQU 00h ; define symbolic names for input and

OUTP EQU 00h ; output ports (IA and OA, respectively)

ORG 0000h

JP START

ORG 0100h
;

START: LD SP,0FFFFh ; initialize the Stack Pointer

MAIN: IN A,(INP) ; read the ‘X’ variable from IA

CALL SIN127 ; call the subprogram

OUT (OUTP), A ; display the function result

JP MAIN

We can change the solution strategy so that we can optimize the space
used in the ROM. We’ll take better advantage of the symmetry of the
sinusoid by cutting the table’s size by half. It now shows only a quarter of
the wave. Now it will be the code that reads the values in the right order.

TABLE: DB 000 ; x = 0 (0 degrees)

DB 003 ; x = 1

DB 006 ; x = 2
...

DB 088 ; x = 31

DB 090 ; x = 32 (45 degrees)

DB 092 ; x = 33
...

DB 127 ; x = 63

DB 127 ; x = 64 (90 degrees)

The first part of the subprogram is the same as that of the previous
strategy, where we save the value of X on register B and preliminarily
take the index in the first half cycle (between 0 and 127), masking bit 7.

SIN127: LD HL,TABLE ; HL = table’s base address

LD B,A ; save the bit 7 in B, before zeroing it

AND 01111111b

We took the previous code and added the following instruction sequence,
which checks whether the index is <63. If it is, the index is left unchanged,
otherwise, it is between 64 and 127, so it is subtracted from 128 so that
we can read the table mirrored (for instance, 127 becomes 1):

BIT 6,A ; the reduced index (0..127) is < 63?

JP Z,CONT ; jump if it is, otherwise take advantage

LD C,A ; of the symmetry of the half-wave and

LD A,128 ; calculate the new index to use:

SUB C ; A = new index = 128 - old index
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The remaining part of the code (where we read the table and invert the
sign of the result if the index is greater than 127) is identical to that of
the previous strategy.

CONT: ADD A,L ; add A to the low part of the base

LD L,A ; address

JP NC,NOCY ; if the sum generates a carry,

INC H ; increment the high part H of the

NOCY: LD A,(HL) ; address; read the value from the table

BIT 7,B ; check if X is in 0..127; if yes,

RET Z ; exit the function with the value in A

NEG ; otherwise invert its sign and exit the

RET ; function with the negative value in A

3.7.3 Reusable modules and functions

1. The WRAM subprogram initializes an area of the RAM that is defined
by the starting address (passed in register HL) and by its size (in register
C). It receives the ASCII code to use to write in the cells in A.

WRAM: LD (HL),A ; write the RAM location pointed by HL

INC HL ; point to the next location

DEC C ; count the loop repetitions

JP NZ,WRAM ; repeat loop until C goes to zero

RET ; return to the calling program

At each repetition of the loop, the content of A is copied to the location
pointed by HL. We increment HL to point to the next location and we
decrement C, the location (and loop) counter. We go back to the calling
program when the requested number of locations has been reached.

Note that assignations apparently haven’t been made before entering the
loop. This is simply because this is not the job of the subprogram, but
rather the calling program, which has to define the contents of HL, C and
A, as required by the specifications.

The following shows what the test program looks like:

ORG 0000h

JP START

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD HL,0C000h ; define the RAM area start address

LD C,32 ; number of location to write

LD A,”W” ; with this ASCII code

CALL WRAM ; call the subprogram
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As we can see, before we call WRAM, we load HL, C and A with the values
established in the specifications. In other words, we “pass the parameters”
from the caller to the subprogram by means of the registers.

The program is very repetitive since only the values of the parameters
change. Finally, everything finishes with a HALT, as required.

LD HL,0C020h

LD C,16

LD A,˝Y˝
CALL WRAM

;

LD HL,0C030h

LD C,8

LD A,˝Z˝
CALL WRAM

;

LD HL,0C038h

LD C,8

LD A,˝K˝
CALL WRAM

;

HALT

To see the write operations in the RAM inside the Deeds-McE debugger,
we suggest setting the memory visualization frame as shown in the figure
below. The example shows the content of the RAM memory after the
program is executed.

To see other locations, use the context menu to choose the address, as
shown in the figure.
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2. At reset, the program jumps to START, where it initializes the Stack
Pointer and then enters an infinite loop where it executes the rotation.

INP EQU 00h ; define symbolic names for input and

OUTP EQU 00h ; output ports (IA and OA, respectively)

ORG 0000h

JP START

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

At the MAIN label, the start of the loop, we assign register B the num-
ber of shifts to execute to get a complete rotation. Then we acquire the
bit configuration we will rotate from the input port. We will rotate this
configuration to the left or right depending on the value of bit 7.

MAIN: LD B,7 ; initialize the rotation counter

IN A,(INP) ; read the input port

BIT 7,A ; check the bit of the rotation verse

JP NZ,RIGHT ; ‘1’ = right, ‘0’ = left

For a left rotation, we zero bit 7 in A (it should always be displayed at
‘0’) and then we copy the register on the output port.

LEFT: AND 01111111b ; leave on only the 7 bits of interest, and

OUT (OUTP),A ; copy the bit pattern to the output port

Let’s call the DELAY subprogram (that we will explain further ahead),
so that there is a half a second pause between two writes.

CALL DELAY ; execute a delay loop of about 0.5S

The figure at the right describes the content of
A. The bits are indicated in letters from ‘a’ to
‘g’.

The shift instruction SLA makes it possible to
left shift all the bits in A by inserting a ‘0’ at the
right. The figure on the left shows the content
of A before execution and after.

SLA A ; shift left the byte

However, to execute a rotation on 7 the bits required by the specifications,
the bit in position 0 has to assume the value of the previous bit in position
6 (’a’). Let’s look at the remaining part of the code:

BIT 7,A ; check if bit 7 is at ‘0’ and jump if

JP Z,NOSETL ; it is so, because bit 0 is already at ‘0’

SET 0,A ; otherwise set bit 0 at ‘1’

NOSETL: DEC B ; count the repetitions

JP NZ,LEFT ; repeat from LEFT seven times,

JP MAIN ; then return to the label MAIN
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After the execution of instruction SLA, we find bit ‘a’ shifted into position
7 and we check it with the BIT instruction.

If bit ‘a’ is at ‘1’, we force bit 0 to that value
with SET, otherwise we leave it at ‘0’.

The figure at the right shows register A before
the execution of SET and after.

We can ignore the fact that ‘a’ is in position 7, since it will be zeroed when
it goes back to the LEFT label, before the OUTP port is written. If seven
rotations have been executed, we go back to the beginning at MAIN.

The right rotation is executed similarly, but with the necessary changes
due to the different rotation direction.

RIGHT: AND 01111111b ; leave on only the 7 bits of interest, and

OUT (OUTP),A ; copy the bit pattern to the output port

CALL DELAY ; execute a delay loop of about 0.5S

SRL A ; shift right the byte, and jump if bit 0,

JP NC,NOSETR ; now in the Carry flag, was at ‘0’

SET 6,A ; otherwise set bit 6 at ‘1’

NOSETR: DEC B ; count the repetitions

JP NZ,RIGHT ; repeat from RIGHT seven times,

JP MAIN ; then return to the label MAIN

The figure on the right shows the content of
register A before the execution of SRL and
after. The bits have been right shifted and a
‘0’ has been inserted at the left.

Our focus is on bit ‘g’, now moved from position 0 into the Carry flag.

We need to rotate seven bits, as we can see
in the figure on the right.

The bit in the Carry flag must be copied in A, in position 6, where SRL
has moved the ‘0’, which had been in bit 7.

The DELAY subprogram deserves a special explanation; its only effect is
to make time go by.

DELAY: PUSH AF ; save A and the Flags

LD HL, 0B4D9H ; define the number of repetitions

LOOP: DEC HL ; 6 clock cycles

PUSH AF ; 11

POP AF ; 10

PUSH AF ; 11

POP AF ; 10

PUSH AF ; 11

POP AF ; 10

PUSH AF ; 11

POP AF ; 10



3.7 Solutions 311

LD A,H ; 4

OR L ; 4

JP NZ,LOOP ; 10

POP AF ; restore the contents of A and Flags

RET

The PUSH and POP pairs, seen in the code don’t do anything special,
except to make time go by. Assuming a 10MHz clock, to get an approx-
imately 0.5S delay, we need to go through 5 million of the processor’s
clock cycles. A loop repetition lasts 108 clock cycles so (5000000/108) ≈
4629710 = B4D9h, which we have loaded in HL, the loop counter.

Finally, a consideration about checking programs in the emulator when
there are loops that produce long delays. A step-by-step execution of the
program can be quite impractical unless the delay subprograms are ex-
pressly (and temporarily) excluded, so that it will be quicker to check the
function of the code.

In the following example, an RET has been inserted in the first line of
the subprogram, while the rest of the line has been excluded through the
addition of a semicolon after the RET22.

DELAY: RET ; PUSH AF ; save A and the Flags

In this manner, the calling program remains intact, calling the subprogram
as usual, while the subprogram has, in fact, been excluded23.

3. We will use the given table to solve the problem, even though it is not the
only method to get the bit configuration as of the given number to copy
on the ports to turn on the LED lights. See Section 3.5.1.4.

The solution that uses the table, however, is certainly the most efficient
from the point of view of execution times (it is less so from the perspective
of memory usage). Let’s define the addresses of the ports and the MaxNum
constant at 32, then let’s link the program to the system reset.

DATA EQU 00h ; input port IA

MaxNum EQU 32 ; maximum value of the input

Led A EQU 00h ; output port OA

Led B EQU 01h ; output port OB

Led C EQU 02h ; output port OC

Led D EQU 03h ; output port OD (a total of 32 LEDs)

ORG 0000h

JP START

ORG 0100h

22 The added semicolon turns all the following into a comment.
23 In programming jargon, we say that a temporary “patch” has been executed.
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After the initialization of the Stack Pointer, three subprogram calls make
the code more legible and better organized.

START: LD SP,0FFFFh ; initialize the Stack Pointer

MAIN: IN A,(DATA) ; read data from the input port

CALL LIMIT ; ensure that the value rests in the limits

CALL DECODE ; decode the value

CALL OUTPUT ; update the column of LEDs

JP MAIN

The names chosen for the subprograms help us understand their function.
After reading the Data port, we limit (saturate) the value to the highest
number. Then, we decode it by getting the bit configuration to copy on
the output ports.

The value limiting function, LIMIT, compares the value in the accumula-
tor with the MaxNum constant. If A is greater than or equal to MaxNum,
the Carry flag is zeroed, otherwise it is set at ‘1’. If it is set at ‘1’, A is
lesser than MaxNum and we exit (RET C), because the number is in the
desired interval. If the Carry flag is set at ‘0’, the number is overwritten
with the maximum value, giving us the required limited value.

LIMIT: CP MaxNum ; compare the value with 32

RET C ; return if the value is less than 32

LD A,MaxNum ; otherwise substitute it with 32

RET

Through the index received in the accumulator, the DECODE subprogram
takes the address of the first byte in the line corresponding to that index.
The index has to be multiplied by 4, since a group of 4 bytes corresponds
to every LED configuration in the table.

The table’s address is TABLE, since this label is placed ahead of its first
byte. If we copy that address in register HL and add that to the index mul-
tiplied by 4, we get the address of the first byte in the line corresponding
to the given number.

Note that the add is simplified (we only add the low part), because it
will never produce a carry in the high part, since the table is allocated at
address 0200h and the index will always be less than 255.

DECODE: LD HL,TABLE ; base address of the table

SLA A ; multiply the index by 4,

SLA A ; because every row contains 4 bytes

ADD A,L ; add the new index to the table address

LD L,A ; now, HL points to the row of interest

RET

Now, we have the address of the first byte in the requested line in HL.
The OUTPUT subprogram goes to take this byte by means of the indirect
addressing mode through HL and copies it to port IA (Led A).
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The operation is repeated three more times and the INC HL instruction
increments the address in HL each time. The LED configuration corre-
sponding to the given number appears on the 4 output ports.

OUTPUT: LD A,(HL) ; read the less significant byte from table

OUT (Led A),A ; and copy it to the port Led A

INC HL ; increment HL to point to the next byte

LD A,(HL) ; ...and so on, for all the other bytes

OUT (Led B),A ; to the port Led B

INC HL

LD A,(HL)

OUT (Led C),A ; to the port Led C

INC HL

LD A,(HL)

OUT (Led D),A ; to the port Led D

RET

4. This solution defines a subprogram OUTPUT that handles the flashing
times and the conditioning by the control inputs.

If we carefully read the table of flashing times defined in the text, we see
that the LED flashing times halve consecutively. This suggests that we
should conform their time trend to that of a binary 4-bit counter where
each output bit starting from the least significant bit flashes twice as
frequently as the one before it. We call the OUTPUT subprogram for
each of the combinations produced by the count.

We define the control port address (PCTR) and the output port address
(PLED), as well as the link to the system reset.

PCTR EQU 00h ; port IA: control inputs

PLED EQU 00h ; port OA: output LEDs

ORG 0000h

JP START

ORG 0100h

We initialize the Stack Pointer, then zero register A, which we will use
to memorize the state of the LED lights. In the main loop, we call the
OUTPUT subprogram at each repetition to force the current LED con-
figuration to exit onto the port PLED.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; set the initial LEDs state in A

MAIN: CALL OUTPUT ; call the subprogram OUTPUT

INC A ; generate the new light configuration

AND 00001111b ; maintain the count cyclical at 4 bits

JP MAIN
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Before repeating the loop, we increment the content of A, which gives
us the next configuration of LEDs lit. The bitmasking done by the AND
instruction allows us to maintain the count cyclical at 4 bits.

As mentioned before, OUTPUT also handles the control inputs giving
us the correct visualization timing of each combination. After saving the
state of the LED lights in B, it reads the control port, and copies that in
H. If bit 7 = ‘0’, we zero the state of the LED lights (turning them off),
otherwise, we take up the current state that was saved in B, thus moving
the sequence forward. When flashing is enabled again, it will start with
all the lights off.

After visualizing the state of the LED lights on the output port we call
the delay subprogram DEL50mS. If bit 6 is at ‘1’, we call DEL50mS again
to double the delay time.

OUTPUT: LD B,A ; save A in B

IN A,(PCTR) ; read the control bits 6 and 7 from the

LD H,A ; port and save them in register H

BIT 7,H ; check bit 7

JP NZ,LAMP ; if it is at ‘0’, switch off all the LEDs

LD A,00h

JP LAMP1

LAMP: LD A,B ; if it is at ‘1’ get the LEDs state

LAMP1: OUT (PLED),A ; switch on/off the LEDs

CALL DEL50mS ; wait for 50 mS

BIT 6,H ; check bit 6

JP Z,NORMAL ; if it is at ‘0’, the half period is 50ms

CALL DEL50mS ; otherwise it is doubled

NORMAL: RET

Finally, we examine the delay generation done by the DEL50mS subpro-
gram. It must be set at 50 mS, since the lights must be on for half the
time and off for half the time in one period (note that 50 mS is the least
common multiple of all the half periods).

DEL50mS: PUSH AF ; save A and the Flags

LD BC,7575 ; initialize the delay loop counter

LOOP: PUSH HL ; four instructions useful only

PUSH BC ; to add delay in the loop

POP BC

POP HL

DEC BC ; count the loop repetitions

LD A,B ; check if BC goes to zero through a

OR C ; bitwise (B OR C) that affects the flags

JP NZ,LOOP ; repeat until BC goes to zero

POP AF ; restore the contents of A and Flags

RET
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If the processor’s clock frequency is 10MHz, each clock cycle lasts 100nS.
We can easily check that the operations inside the LOOP loop make 66
clock cycles go by (consult the instruction tables in Appendix C). The
loop counter, BC, is set at 7575. when we do the calculations, we see that
(7575 · 66) · 100nS gives us approximately the 50mS required.

5. a) We calculate the period of the square wave generated. Here, we show
the code defined in the text in relation to the main loop.

START: LD A,00000000b ; set initial value in A

MAIN: OUT (WAVEP),A ; send the current value to the port

XOR 01h ; invert the bit 0 of A

JP MAIN ; repeat indefinitely the loop

Before entering in MAIN, the accumulator is zeroed. Then its value
is cyclically copied to the port (with the OUT instruction), and right
after, bit 0 is inverted (with an XOR instruction). Going back to
MAIN (with the JP instruction), we repeat the sequence, resulting
with bit 0 alternating cyclically between the values of ‘0’ and ‘1’.

If we consult the instruction tables (see Appendix C), we see that
OUT is executed in 11 clock cycles, XOR in 7 and JP in 10. So a loop
repetition lasts 28 cycles and this is the time that passes between two
transitions of the square wave in the output. The period of the signal
is 28 · 2 = 56 clock cycles (see the figure below):

The clock frequency is 10MHz, therefore the length of the cycle, com-
puted as the inverse of the frequency, is 100 nS (10−7S). Hence, the
duration of the period of the square wave is 56 · 100 nS = 5600 nS =
5.6µS (corresponding to a frequency of approximately 179KHz ).

b) To change the period of the square wave generated by bringing it to
4 mS, we need to add a delay (the DELAY subprogram shown below)
inside the main loop. Between one variation of the output and the
next, 2 mS must go by (half of the period required in the text):

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; set the initial value in A

MAIN: OUT (WAVEP),A ; send the current value to the port

XOR 01h ; invert the bit 0 of A

CALL DELAY ; generate a delay

JP MAIN ; repeat indefinitely the loop



316 3 Programming the DMC8

Since now we use the Stack mechanism (to call a subprogram and
return from it), we have also added the initialization of the Stack
Pointer in the first couple lines of the program.

Now we must write the code of DELAY, taking care to preserve the
content of A used in the main cycle. We take the simplest structure of
a delay loop that we know (see Section 3.3.5.4), making sure to add
a RET after the loop. We try to set the counter at the highest value
possible.

DELAY: LD C, 255 ; 7 clock cycles

LOOP: DEC C ; 4

JP NZ,LOOP ; 10

RET ; 10

We get 7 + (4 + 10) · 255 + 10 = 3587 cycles, corresponding to

3587 · 100 nS = 358700 nS ≈ 0.36 mS,

which is a bit less than the 2 mS required. So we go on to a nested
loop structure like the following example where we leave indicated the
values to load in the outer loop counters (m) and inner loop counters
(q), but we indicate the clock cycles of each instruction.

DELAY: LD C, <m> ; 7 clock cycles

LOOP: LD B, <q> ; 7

NESTED: DEC B ; 4

JP NZ,NESTED ; 10

DEC C ; 4

JP NZ,LOOP ; 10

RET ; 10

We have seen that the clock cycles of the repetition were 28 in the
version of the program that didn’t call a DELAY.

Let’s evaluate how many clock cycles we need to make 2 mS go by.
We divide this time by the length of one cycle (100 nS ):

2 mS / 100 nS = 2000000 nS / 100 nS = 20000 cycles.

Also, considering that CALL is executed in 17 clock cycles, the sub-
program should produce a delay of:

20000− 28− 17 = 19955 clock cycles.

The specifications define a tolerance of 0.5%. Let’s apply this percent-
age to the number of cycles of the half period.

20000 · (±0.005) = ±100 tolerance cycles.

To make sure we keep within the required tolerance, we can define the
delay of the internal loop (which is repeated m times) at a value of
less than 100 clock cycles.
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Let’s look at the part that will be repeated m times:

LOOP: LD B, <q> ; 7 clock cycles

NESTED: DEC B ; 4

JP NZ,NESTED ; 10

DEC C ; 4

JP NZ,LOOP ; 10

Let’s express the delay generated by this sequence of instructions in
function of q. The delay must be less than 100 clock cycles.

(7 + (4 + 10) · q + 4 + 10) < 100

From this equation, we derive:

q <
(100− 7− 4− 10)

(4 + 10)
≈ 5.6 .

So we choose to assign this number (q = 5, rounded down) to register
B. The delay is:

(7 + (4 + 10) · 5 + 4 + 10) = 91 clock cycles

Earlier, we saw that the subprogram execution time has to be 19955
clock cycles. To calculate m we must take the duration of RET and
the instruction that initializes register C from this value, since they
are outside the LOOP loop. Then we divide by the number of clock
cycles calculated for the internal delay:

m =
19955− 10− 7

91
≈ 219.1

which we round to the nearest whole number (m = 219). The subpro-
gram code in the final version, is as follows:

DELAY: LD C, 219 ; 7 clock cycles

LOOP: LD B, 5 ; 7

NESTED: DEC B ; 4

JP NZ,NESTED ; 10

DEC C ; 4

JP NZ,LOOP ; 10

RET ; 10

Based on the values obtained from m and q, taking the main loop into
account, the length of an half period is:

28 + 17 + (7 + (7 + (4 + 10) · 5 + 4 + 10) · 219) + 10 = 19991

This value is well within the required tolerance. We can check this by
calculating the percent in relation to the expected value.

20000− 19991

20000
· 100 ≈ 0.045% � 0.5% (c.v.d.).
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6. Let’s define the port addresses and the link to the reset. On start, we
initialize the Stack Pointer and the output port, which zeroes line SER.

IA EQU 00h ; define name and address of the

OA EQU 00h ; input and output ports (IA and OA)

ORG 0000h

JP START

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; and the output port OA (SER = ‘0’)

OUT (OA),A

The program’s main loop is divided into two subprogram calls. READ is
a function that waits for a new number on the input port, while SEND
transmits it in serial form on line SER. As indicated in the text, we know
it is impossible to receive new data while we are still transmitting the
current one, so we can safely separate these two tasks.

MAIN: CALL READ ; wait for the data

CALL SEND ; send it on the serial line

JP MAIN

On the rising edge of bit 7, the READ function copies input port IA to
the accumulator. This function is made up of two consecutive wait loops.
The first loop checks that bit 7 is at ‘0’ and if it isn’t, it waits until it
is. The second loop waits for the rising edge and then goes back to the
calling program when it arrives.

READ: IN A,(IA) ; wait for bit 7 = ‘0’

BIT 7,A

JP NZ,READ

EDGE: IN A,(IA) ; wait for the transition

BIT 7,A ; from ‘0’ to ‘1’ of bit 7

JP Z,EDGE

RET

The SEND subprogram is divided into three parts. The first part zeroes
bit 7 read from the port (it should not be transmitted), then computes
the parity bit to insert at the end of the packet.

The operation the text requires (IA0⊕ IA1⊕ IA2⊕ IA3⊕ IA4⊕ IA5⊕ IA6)
is actually executed by the processor automatically, at the time the AND
instruction is executed, and the result is memorized in the parity flag.

SEND: AND 01111111b ; mask bit 7 and calculate the parity

JP PE,PAR0 ; jump if parity is even

PAR1: OR 10000000b ; otherwise set at ‘1’ the parity bit

PAR0: LD C,A ; save into register C the packet to send
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The flag is tested by a conditional jump (PE = “Parity Even”) and the
result tells us whether (or not) to insert a ‘1’ in position 7 of the byte to
transmit. Then, the byte is copied in register C.

We start serial transmission by writing a ‘1’ (the “Start” bit) on line 0
of the output port. This value has to be kept active on line SER for the
duration of a “bit time”, which is why we call the DELAY subprogram,
which will make 0.1 mS go by:

LD A,00000001b ; set the ”Start bit” at ‘1’

OUT (OA),A ; send it to the line SER

CALL DELAY ; wait for 0.1 mS

The third part of the subprogram consists of a loop that sends all the data
bits and the Stop bit in sequence. The loop counter is set at 9 (7 data bits
+ 1 parity bit + 1 stop bit).

At each repetition, we collect the next bit to transmit from register C and
we make the bit in position 0 exit onto the port. This bit corresponds to
line SER (see the figure below left, which shows the content of register C
at the first sending).

The value is kept on the output for a bit-time (because of the call to
DELAY). Then, the register is right shifted through an SRL instruction
so that the next bit to transmit is prepared in position 0 (the right hand
side of the figure shows the content of C ready for the second sending).

Note that the SRL instruction also inserts a ‘0’ from the left. We can use
this to have the ninth bit to transmit (the Stop bit) available. The loop
is actually repeated 9 times (until register B is zeroed).

LD B,9 ; initialize the counter of the bits to send

LOOP: LD A,C ; get the (remaining) data bits to send

AND 00000001b ; zero the bits not of interest for us

OUT (OA),A ; transmit the current bit on line SER

CALL DELAY ; wait for 0.1 mS

SRL C ; right shift the remaining bits to send

DEC B ; count the bits remained to transmit

JP NZ,LOOP ; repeat from LOOP until ended

RET

All we need for a delay is an 8-bit loop counter. If we set D = 70, we get
a delay of (7 + (4 + 10) · 70 + 10) = 997 clock ≈ 0.1mS.

DELAY: LD D,70 ; 7 clock cycles

WAIT: DEC D ; 4

JP NZ,WAIT ; 10

RET ; 10
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Interfacing with external devices

Abstract In this chapter, we will learn how to interface the microcomputer
with external devices and how to transfer data between different systems.
First, we will introduce the concept of “handshake”. Then we will present
techniques such as “polling”, “interrupts” and the use of “timers”, which
allow convenient management of the communication. Each concept will be
presented theoretically and then deepened with one or more examples devel-
oped using both software and specialized hardware. The chapter ends with the
presentation of several systems developed exploiting the above mentioned con-
cepts (e.g. pulse generators, sinusoidal waveform generators, object counters,
sensor reading, and asynchronous communication).

4.1 Managing communication with external devices

In the previous chapters, we have used parallel ports mostly to acquire the
states of switches and drive LED lights. Switches and LED lights are “periph-
eral devices” (or “peripherals”, or “external devices”) from the point of view
of microcomputers. In this simple case, we have not posed the problem of
synchronizing the peripherals and the system. In fact, LED lights are always
accessible to the processor (that can turn them on and off when it wants) as
are switches (that can be checked at any moment).

In general, a peripheral can be something more complex like a printer, key-
board, mouse or network card... For example, at the moment that the proces-
sor tries to use a printer, it might be turned off, out of paper or blocked due
to a previous error (like the paper getting stuck).

Furthermore, many types of peripherals may remain occupied for a certain
amount of time in which they cannot accept (or send) information. It would,
therefore, be unwise to expect to interact with these devices at any moment
without first determining their current state. So, for many types of peripherals,
the processor will need to check whether the device is available to exchange
information.
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The data transfer is handled by a dedicated synchronization protocol called
“handshake”. This is generally implemented by adding lines and hardware
devices to the data connection, and dedicated software-handling procedures
from the connection. In this book, we will not deal with standard connection
specifications, which are generally very complex and vary broadly. Rather, we
will examine the underlying introductory concepts.

In this chapter, we will deal with the topic of “interrupts”, which are often
necessary to handle exchanges of data between the processor and peripher-
als to the best advantage. As alluded to previously, (see Section 2.1.5), the
processor has lines (IRQ2, IRQ1 and IRQ0) that allow it to interrupt the
execution of a currently running program in order to start another program
specifically designed to handle the situation that caused the interrupt. As we
will see further on in this discussion, the interrupt “mechanism” allows us to
efficiently resolve communication with devices.

The figure below shows a case in which a microcomputer has to transmit data
to a standard peripheral. We introduce data lines and other lines (shown in the
figure as “control signals”), which will be used to synchronize the transmission.

Even when the roles are reversed (the microcomputer receives data from the
peripheral), it is generally necessary to use control signals to synchronize data
reception, as shown in the following figure.

These signals are indispensable for preventing data loss or duplication in the
communication between devices. The control signals are handled by the soft-
ware and dedicated hardware. When we create these connections and the
hardware to support them, we say we are “interfacing” peripheral devices to
the microcomputer.

An interface1 makes it possible to connect two systems and have them adapt
to each other to permit an efficient exchange of data. From the hardware
perspective, an interface is a set of input/output ports and a specific hard-
ware and software logic that allows us to connect a certain peripheral to the
computer system.

1 The term“interface” derives from the Latin words “inter” (between) and “facies”
(faces).
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To make the situation clearer, let’s bring back the example of the printer,
which we imagine is connected to a personal computer. Assume we have to
print a very long document. When the microprocessor sends the document to
the printer, that last uses its own internal memory. Once it accepts a certain
percentage of the document, the printer will be unable to receive the rest until
it has printed out that first percentage, thus freeing up its memory.

Printing this takes up a much longer time than the processor’s normal run
times. As the printing is taking place, we need to temporarily stop data trans-
mission and start it again when the printer’s memory is free.

We have dealt briefly with the need to temporarily slow down or stop data
transmission. Now, let’s take a look at another example, which is diametrically
opposed to that case.

Imagine we receive data from an alphanumeric keyboard. The typing speed
is not constant (it depends on a human), so a long time can go by between
two successive keystrokes. Here, the processor does not need to handle a large
amount of data, but rather it must pay attention to the keyboard only when
there is a keystroke. In other words, the challenge is to prevent the processor
from uselessly waiting for data for an excessive amount of time, which could
be costly in terms of system efficiency.

In general, this also applies when two microprocessor systems communicate
with each other, as in the following figure.

Considering the examples reported above, a printer is in fact a system con-
structed around a microcomputer, as is an alphanumeric keyboard. So, the
concept of “peripheral” depends on the point of view. From the perspective
of system A (left hand side in the figure above), we can think of system (B)
as its peripheral, but the opposite is also true.

For simplicity’s sake, we will refer in this section to parallel interfaces, that is
where data are exchanged through (in our case, 8-bit) parallel connections.

We mentioned that in creating a specific interface, we must design a dedicated
handshaking network between the processor and the peripheral device. This
network can be implemented in many ways. As seen in the previous figures,
we must add wires to the connection beyond those for data.

The connected parts use these additional wires to generate a series of call and
response signals in both directions. It should be noted that in general, there
is no “universal” solution, and each device requires specific choices, case by
case. Obviously, there are pre-made input/output devices on the market for



324 4 Interfacing with external devices

every type of processor. They may be for general use or specialized for specific
applications, able to satisfy the broadest range of connection requirements.

Rather than analyzing commercial devices, in the following, we take a design
approach progressively introducing examples of device connections, starting
with some basic points.

4.1.1 The unidirectional handshake

For the discussion below, let Tx (data transmitter) and Rx (data receiver) be
the units that communicate with each other. We have seen that these can be
a computer and a peripheral or vice versa, or even two computers connected
together. The figure below shows a device Tx that sends data to a receiver
Rx using parallel data transmission.

The device that is transmitting data signals this through a dedicated valida-
tion pulse, associated with the information being sent. Here, this is called a
Strobe pulse. When Rx receives this “synchronization” pulse, it can acquire
and use the information.

We call the handshake “unidirectional” when all the control lines go in one
direction (Tx → Rx). In the figure above, we have only one control line.

This method is usable in any situation where Rx deals with data reasonably
quickly and so is always ready to receive the next data from the transmitter.
If this is not the case, we need to choose a more complex type of handshake
(we will analyze this case further on).

The figure below shows a data transfer sequence where Tx first loads number
3Fh on the data lines and then generates a pulse on the Strobe line. Rx
acquires the number (for example on the rising edge of Strobe) and then
waits for the next one.

Number 78h is sent, thus repeating the sequence. It is also acquired by Rx at
the new Strobe pulse (the red arrows symbolize the acquisition of the data).
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Note: The Strobe signal is necessary because the receiver must know when
a new piece of information is available. The two communicating systems are
often asynchronous, that is they cannot share the same clock. The Strobe
signal is always necessary, regardless, because the receiver must know when a
new piece of information is available and it is not enough to transmit the data
to “notify” the receiver. For example, think of sending some text in ASCII
code, character by character, which contains a word with a double letter (like
the word “cool”). Between the first and second ‘o’, the data lines do not
change. In the absence of a synchronization signal, the receiver doesn’t know
that we are sending two consecutive letter ‘o’s’ since it can only observe the
data line values.

Example of a parallel interface with a unidirectional handshake

Using what we’ve learned about parallel ports in past chapters, let’s try to
design a unidirectional handshake interface. Let’s imagine Tx is our computer
system and we need to send data to the external device, Rx, which is fast
enough to acquire all the data we send it.

As we can see in the following figure, to transmit data, all we need is an
8-bit parallel output port, which we will call a “Data Port”. For the Strobe
signal, we can use a line retrieved from a second output port (generally, a port
dedicated to managing handshake signals is called a “Control Port”).

We complete the design choices with appropriate handling software, as sug-
gested in the example below. The program begins with the usual definitions,
link to the reset and initialization of the Stack Pointer. Before entering the
main cycle, we also initialize the output ports and register B.

CTRLP EQU 00h ; OA and OB output ports

DATAP EQU 01h

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; and the output ports

OUT (DATAP),A

OUT (CTRLP),A

LD B,0 ; (simulated) data to trasmit
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We use register B to simulate the data to transmit. In a real application,
the data can be taken from any type of calculation, or come from reading
a file or another source. For our example, every number is generated as a
test, incrementing B before sending each time. A delay (CREATE) has been
inserted to allow us to also simulate the time that a real system would take
to get the number.

MAIN: CALL CREATE ; simulate the time that is necessary

INC B ; to ‘create’ a new number to transmit

After the new value is retrieved from B, it is sent to the Data Port (DATAP).
So we bring the Strobe line to ‘1’ by writing this value on bit 0 of the Control
Port (CTRLP). For the moment the other bits don’t interest us, so we write
them all at ‘0’.

LD A,B ; copy the number to register A

OUT (DATAP),A ; and transmit it to the peripheral

LD A,00000001b ; set the Strobe line to ‘1’

OUT (CTRLP),A ; on the Control Port

Suppose that a duration of about 0.5mS is required for the Strobe pulse. The
line must be brought to ‘0’ after this time, so a call to a delay subprogram
(PTIME) has been inserted.

The duration of the pulse is chosen on the basis of the timing specifications
of the overall system. Generally, it should be long enough so that the receiver
can detect the arrival of the pulse, as we will see further on. Let’s go back to
MAIN to send the new number.

CALL PTIME ; keep Strobe high for about 0.5 mS

LD A,00000000b ; set the Strobe line to ‘0’

OUT (CTRLP),A

JP MAIN

The code of the CREATE subprogram is shown here below. It includes a delay
loop with a duration that in our case is purely symbolic.

CREATE: LD C,50 ; wait for the ‘creation’ of new data

DCR: DEC C ; 4 +

JP NZ,DCR ; 10 = 14 cycles; 14 x 50 = 700 cycles +

RET ; 17 (call) +7 (ld C) +10 (ret) = 734 cycles

The PTIME subprogram is executed in approximately 0.5mS. Read the com-
ments in the code (suppose that the clock cycle takes 100nS ).

PTIME: LD C,142 ; calculate the pulse duration time

PLOOP: PUSH BC ; 11 + (PUSH and POP added to delay)

POP BC ; 10 +

DEC C ; 4 +

JP NZ,PLOOP ; 10 = 35 cycles; 35 x 142 = 4970 cycles +

RET ; 17 (call) + 7 (ld) + 10 (ret) =

; 5004 cycles = about 0.5 mS
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Now, let’s focus on the receiver
Rx; see the figure to the left.

We have used a “Data Port” to
receive the information trans-
mitted, and a “State Port” to
detect the pulses sent on the
Strobe line.

This port is generally called a
“State Port” because it allows
us to evaluate the state of the
interface.

A potential solution for handling communication from the receiver’s side is
found below. After the usual definitions and initializations, the program zeros
register A before entering the MAIN loop. This will zero the output port,
which visualizes the number received from time to time, for testing purposes.

OUTP EQU 00h ; OA output port

DATAP EQU 01h ; IB input port (Data Port)

STATP EQU 00h ; IA input port (State Port)

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; Set A = ‘0’

MAIN: OUT (OUTP),A ; copy A to the output port

At the WAIT0 label, we find two consecutive wait loops, where we read the
state port, looking for the rising edge of Strobe. In the first loop we check
that the state goes to ‘0’ or is already there. In the second loop, we wait until
the line goes from ‘0’ to ‘1’.

WAIT0: IN A,(STATP) ; read the State Port

BIT 0,A ; check the Strobe line

JP NZ,WAIT0 ; wait for a ‘0’

WAIT1: IN A,(STATP) ; read the State Port

BIT 0,A ; check the Strobe line

JP Z, WAIT1 ; wait for the transition from ‘0’ to ‘1’

We retrieve the data as soon as the rising edge of Strobe is identified.

IN A,(DATAP) ; copy to A the received byte

CALL PROCESS ; simulate a latency time

JP MAIN ; repeat the sequence as of MAIN

We have inserted a call to the PROCESS subprogram to simulate a “latency
time” in the data processing.
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The subprogram doesn’t change the content of register A. We go back to the
MAIN label and copy the byte we received from A to port OUTP to visualize
it, then we wait for the next data.

The code of the subprogram is as follows. Its structure is that of a normal
delay loop that simulates the time the processor takes to use the data received
(totally symbolic in our case).

PROCESS: LD C,10 ; simulate a latency time in processing data

PRO: DEC C ; 4 +

JP NZ,PRO ; 10 = 14 cycles; 14 x 10= 140 cycles +

RET ; 17 (call) +7 (ld C) +10 (ret) = 174 cycles

Now let’s look at the whole system, shown in the figure below. It is made up
of the two modules Tx and Rx that we have just now examined.

Let’s try to think about the possibilities this interface offers, keeping in mind
that the handling software in the two modules is what we have seen before.

Regarding Tx, all the transmission operations are executed by the program,
including pulse generation on the Strobe line. The capacities of the Tx proces-
sor are mainly dedicated to handling the interface, since it needs to continually
go and retrieve a number, then transmit it during the main loop.

If the processor performs other tasks, they should be executed in the main
loop while the communication is being handled. We shall see further on how
to save computational resources by using the processor less and separating
interface management from the other tasks that it can execute.

As with Tx, all the communications management operations in Rx are exe-
cuted by the program in the main loop, including detecting the Strobe pulse.
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The most critical task from the perspective of wasting processing potential in
the processor is definitely the double wait loop at the rising edge of the signal.
The processor can certainly carry out other tasks in the main loop but with
little residual computing capacity. This is because it must continue in each
case to follow every point of the variations in the synchronization line since
the Strobe signal has a limited duration.

Note that no mechanism allowing for a controlled slow-down of the transmis-
sion has been implemented. This means that the programmer must pay close
attention to the execution times of the other tasks the processor carries out
(aside from waiting for the Strobe pulse) to prevent data loss.

4.1.2 The bidirectional handshake

In cases where the receiving device isn’t fast enough, the transmitter has to
regulate its own transmission speed. Clearly, we don’t achieve this by slow-
ing down the transmitter’s clock (that would be a real waste of resources).
Rather, we add another line to the interface, that is oriented in the opposite
direction from that of the data line. This is why we call this type of handshake
“bidirectional”.

The figure below shows a Tx device that transmits data in parallel to an Rx
device, as in the previous case. In this block schematic, however, there is an
additional wire called “Busy”. It is generated by the receiver and sent back
toward the transmitter.

This new line allows Rx to inform Tx about its state. For example, we can
make it so that when Busy is at ‘1’, it indicates that Rx is working on a task
and can’t receive data. When Busy = ‘0’, Rx is ready to receive the next
number.

Example of a parallel interface with a bidirectional handshake

The following figure shows a potential connection from the new Busy line to
the microcomputer, which transmits data. With a dedicated program, we can
handle the sequence of operations involved.

Clearly, unlike the previous case, microcomputer Tx should check the Busy
line before sending the number. One could say it is “asking the peripheral’s
permission”.
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The schematic is similar to the one before but it has an added connection on
an input port (the State Port) that evaluates the Busy line. Here, the line is
connected to bit 7 (of the IA port in the schematic).

The handling program is similar to the one before but with an added test of
the Busy line, obtained by reading the state port. Below, we’ll show only the
parts of the code that differ from the previous example of a transmitter. We
have added the state port (IA) to the list of definitions.

CTRLP EQU 00h ; OA and OB output ports

DATAP EQU 01h

STATP EQU 00h ; IA input port

The significant change is in the main cycle, highlighted below. Before trans-
mitting the data, we go to read the state of the port on the WAIT label. Then
we wait for the receiver to give us the permission to transmit. If the Busy
line is already at ‘0’ (or when it goes to ‘0’), we go ahead and transmit the
number (the rest of the code is unchanged).

MAIN: CALL CREATE ; simulate the time that is necessary

INC B ; to ‘create’ a new number to transmit

WAIT: IN A,(STATP) ; read the state of the Busy line

BIT 7,A ; wait for the peripheral to free itself

JP NZ,WAIT ; go on if the peripheral is free

LD A,B ; copy the number to register A

OUT (DATAP),A ; and transmit it to the peripheral

LD A,00000001b ; set the Strobe line to ‘1’

OUT (CTRLP),A ; on the Control Port

...
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The code presented here can accommodate some variations. For example, in
the busy-waiting loop, we can carry out other tasks if required. This addition
would make us slower to react to the variations of Busy.

Now, let’s deal with the
changes from the perspec-
tive of the receiver Rx.

See the figure to the right.
We have the Data Port
and the State Port, which
were already present in
the previous version and
used to handle the data
and Strobe lines.

Now we have added an
output port that func-
tions as a Control Port
to generate the Busy line.
The program is meant to
handle the value of the
Busy line.

We have added the definition of the Control Port (OB) to the code:

OUTP EQU 00h ; OA output port (OUT)

BUSYP EQU 01h ; OB output port (BUSY)

DATAP EQU 01h ; IB input port (Data Port)

STATP EQU 00h ; IA input port (State Port)

Here, as before, we are only showing the differences from the previous receiver
example. They are highlighted in the following list:

MAIN: OUT (OUTP),A ; copy A to the output port

LD A,00000000b ; set Busy = ‘0’, to enable

OUT (BUSYP),A ; the reception of new data

WAIT0: IN A,(STATP) ; read the State Port

BIT 0,A ; check the Strobe line

JP NZ,WAIT0 ; wait for a ‘0’

WAIT1: IN A,(STATP) ; read the State Port

BIT 0,A ; check the Strobe line

JP Z, WAIT1 ; wait for the transition from ‘0’ to ‘1’

LD A,00000001b ; activate Busy to avoid receiving new data

OUT (BUSYP),A ; while processing

IN A,(DATAP) ; copy to A the received data
...

As we can see in the main loop, we deactivate Busy before waiting for new
data. We then reactivate it as soon as it is received. While the information is
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processed by the receiver, the transmitter will not be authorized to send new
data. It can send only after data processing is completed, when the receiver
indicates it is available for a new transmission. The following figure shows the
complete system using the bidirectional handshake.

Now, let’s look at the advantages of this version of the interface. Basically,
the comments made about the previous version hold here as well, but we’ll
add two observations.

The first is that the synchronization between the transmitter and receiver is
a clear advantage because it makes sure the receiver doesn’t lose data if it is
in a state where it can’t receive new data.

The second is that the added wait cycle in the transmitter’s code is a disad-
vantage. It creates another waste of processing capacity. The processor could
also carry out other tasks aside from waiting for the receiver to authorize
sending new data.

4.1.3 More complex handshake types

More complex devices may need to be handled by more control lines. For
example, the figure below shows a new line called Ack (“Acknowledge”), which
is used as another response by the receiver.
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Here, the new line does not regulate the speed of transmission as the Busy
signal does, but is used to confirm that the data has (or hasn’t) been received
and processed by the peripheral.

For example, if we didn’t have this confirmation, the transmitter’s software
could decide to send the data again or tell the user, etc. We will not go further
into the different forms of handshakes2.

4.2 Hardware-supported handshake

Let’s look at the parallel interface with bidirectional handshake that we in-
troduced in Section 4.1.2. We have discussed the wasted processor potential,
which is mainly caused by the wait loops it is involved in and the timing of
signals. Since this is an introduction, we have so far exclusively referred to the
available hardware in the microcomputer, that is its input and output ports.

To be clear, this interface, in its current state is not well designed. We need
to relieve the processor of the low-level jobs that we have had to task it with
to manage the lines.

Let’s look for example, at an aspect of interface management that we haven’t
investigated. It regards the duration of the Strobe pulse, which has to be long
enough so that the receiver can detect that the pulse has arrived. A shorter
Strobe pulse requires the receiver to read the state port very often so that no
pulse goes undetected. Also, under a certain minimum length, we can’t even
afford to go. In fact, let’s consider the wait loop that we have used in the
receiver to wait for the Strobe signal:

WAIT1: IN A,(STATP) ; (11 clock cycles) read the State Port

BIT 0,A ; ( 8 cycles) check the Strobe line

JP Z, WAIT1 ; (10 cycles) wait for its activation

To be sure that we detect the pulse, the duration has to be greater than the
loop’s execution time, which is 29 cycles (11 + 8 + 10).

We clearly need to add some hardware tricks aside from the simple input and
output ports to prevent the receiver’s processor from having to do nothing
other than follow the interface signals to keep from losing data.

To start, it might be useful to use hardware to “capture” the arrival of Strobe,
thus freeing the processor from keeping track of the situation. When the cap-
ture is done, the processor needs to be signaled immediately so that it will
retrieve the data. Also, the generation of Busy can be automated.

This way, the receiver’s processor can take care of everything else and dedicate
only the necessary time to the interface.

2 According to the system specifications, the types of handshakes can be very com-
plex and go beyond the introductory scope of this book.
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4.2.1 Example of a parallel interface with hardware handshake

The following figure shows an implementation of a parallel interface between
two systems with a handshake managed by the hardware. Here we resolve
some of the issues we had previously.

Both systems use a Data Port and a State Port. Control ports are unnecessary
here since detecting the Strobe pulse and the function of the Busy signal are
done by the added circuit between the two systems (the two NAND gates),
with no direct participation by the processors.

Regarding the receiver Rx, what is new is that the State Port is no longer used
to keep tabs on the arrival of the Strobe signal (this is done by the hardware).
The State Port has more time to check if data from the processor has arrived,
by reading the Ready line (on bit 0).

As we can see in the schematic, the two NAND gates are connected in order
to make an asynchronous flip-flop Set-Reset (SR) with “active low” inputs.
Its output drives two lines: Ready (which means that the data is ready for
the receiver), and Busy (which we know, and is meant for the transmitter).
The other input comes from signal line rB on Rx’s Data Port.

Also, Reset initializes Rx and also the flip-flop. So at the beginning, the Ready
line is at ‘0’, which indicates that Rx has not been sent any data yet. From
the perspective of the transmitter, a ‘0’ on the Busy line indicates that Rx is
available. So the transmitter can send the first byte by writing its value on
the Data Port (OB).

See the timing diagram shown in the figure below where the first two tracks at
the top represent the instructions executed by the Tx and Rx processors. To
make it easier to read, only the OUT instruction (executed by Tx) that sends
the data byte to Rx, and the IN instruction (executed by Rx) that accepts it
are included.
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As shown by the red arrow on the left, the OUT instruction sends the data
byte on the parallel OB port and also generates an active low short pulse on
the associated output wB (see Section 2.3.2 on input and output ports).

We use this pulse to signal to the receiver that there is new data; for this
we have connected wB to the Strobe line. Notice that, when it’s done this
way, Tx’s software doesn’t have to generate this pulse since that is automatic.
We are also free from determining its duration since it isn’t acquired by the
receiver’s program but by the SR flip-flop.

The Strobe pulse brings the output of the SR flip-flop to ‘1’ (lines Ready and
Busy), then tells the transmitter it can’t send other data and that a data byte
is ready to read from Rx. In the meantime, Rx first checks the Ready line on
the state port and then goes to read the data lines, as required, by executing
an IN instruction on port IB.

Executing an IN instruction also generates an active low pulse on the corre-
sponding line rB (red arrow on the right). Activating this line zeroes the SR
flip-flop and refreshes the functionality of the interface, which goes back to its
initial state. Now the transmitter can send a new data byte.

Programming the parallel interface with handshake hardware

Now, let’s analyze this interface’s handling code. It derives from the code in
the previous interface with bidirectional handshake (see Section 4.1.2). Let’s
first look at the transmitter’s handling program.

Notice that there is one less port in the initial definitions; here we do not need
the Control Port.

DATAP EQU 01h ; OB output port

STATP EQU 00h ; IA input port

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0100h

Before entering the main loop, we initialize the Stack Pointer and also register
B, which we will use to create the data byte to transmit (on this subject, see
the observations in Sections 4.1.1 e 4.1.2).
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START: LD SP,0FFFFh ; initialize the Stack Pointer and

LD B,0 ; the first number to be transmitted

The main loop includes: creating a new number, the wait loop for Busy to be
zeroed and sending the new data byte. Here, we omit the subprogram code
since it is identical to the one in Section 4.1.1.

MAIN: CALL CREATE ; simulate the time that is necessary

INC B ; to ‘create’ a new number to transmit

WAIT: IN A,(STATP) ; read the state of the Busy line

BIT 7,A ; wait for the peripheral to free itself

JP NZ,WAIT ; go on if the peripheral is free

LD A,B ; copy the number to register A

OUT (DATAP),A ; and transmit it to the peripheral

JP MAIN

The lines in the code about sending the number are highlighted. These lines are
identical to the cited examples except that there is no part about generating
Strobe since the hardware network has now made that automatic.

This means that the PTIME subprogram that timed the length of the pulse
is also absent here. Now the transmitter code is streamlined even though we
still have to cyclically check the level of the Busy line. We will soon resolve
this problem as well by using interrupt techniques (see Section 4.4).

Here below is the receiver’s code:

OUTP EQU 00h ; OA output port (OUT)

DATAP EQU 01h ; IB input port (Data Port)

STATP EQU 00h ; IA input port (State Port)

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; Set A = 0

After the usual definitions, we zero A and enter the main loop. This is similar
to the code in Section 4.1.2, but there is no handling of the Busy line (which
is now managed directly by the hardware).

The wait loop is also different. It now checks for the Ready line to be activated
rather than searching for the arrival of the Strobe signal.

MAIN: OUT (OUTP),A ; copy A to the output port OUTP

WAIT1: IN A,(STATP) ; read the State Port

BIT 0,A ; check the READY line

JP Z, WAIT1 ; wait for its activation

IN A,(DATAP) ; acquire in A the received data byte

CALL PROCESS ; simulate a latency time

JP MAIN ; repeat the sequence as of MAIN
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As briefly explained for the transmitter, in Section 4.4 we will see how to use
interrupt techniques to also eliminate the wait loops from the program code.

To summarize, in this version:

— much of the handshake management is resolved by the small hardware
network that we added to the interface between the two systems.

— handshake management is largely invisible in the code. There is, in fact,
no trace of it except for wait loops on Busy (Tx) and Ready (Rx).

— we can use a short Strobe pulse without forcing the receiver to waste time
waiting for its arrival.

— the Ready signal value is maintained active by the circuit, and made avail-
able to the receiver’s processor. This leaves the receiver free to continue
executing other tasks while it waits to acquire a new data byte.

— the simple read/write of the data byte allows for the automatic activa-
tion/refresh of the handshake mechanism.

4.3 Polling

We have seen how Tx and Rx
can talk to each other. How-
ever, there can be many more
than two systems connected
together.

The figure at the right shows
an example where Rx (A) re-
ceives data from multiple Tx
systems (B, C, D...).

Rx interacts with all the in-
terfaces in the system; it con-
tinually checks for any data
arriving. This cyclical, rest-
less and time-consuming op-
eration is called “polling”.

Rx polls the peripherals by reading the state ports connected to the handshake
circuits. It generally needs to solve two problems:

— identify (“recognize”) the device that needs an intervention.

— manage the “priority” for cases where more than one device makes a
request at the same time.

Let’s assume the device interfaces are designed according to the criteria from
Section 4.2.1 for reasonably efficient communication.
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Starting from this assumption, let’s
look at an example where three Tx
units interface with one Rx as seen
in the figure at the right.

For simplicity’s sake, let’s imagine
that the Tx units are all the same
and they manage a Data Port (8
lines), a Strobe line directly re-
trieved from the write signal of that
port and a Busy line received from
a State Port.

Rx (see the figure) receives the data from three transmitters (B, C e D):

The data are acquired through the three input ports IB, IC and ID, respec-
tively. As we have seen, each Tx manages its Strobe and Busy lines. The figure
shows the three hardware handshake networks, which are all independent from
each other and identical to those introduced in Section 4.2.1.

Port IA is used as a State Port and makes it possible to read the three flip-
flops SR-B, SR-C and SR-D on lines 2, 1 and 0. If one or more are active,
they indicate that the corresponding Tx has sent a data byte and it needs to
be accepted.
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The flip-flops SR-B, SR-C and SR-D are connected in order to receive outputs
rB, rC and rD that signal the reading of ports IB, IC and ID. Reading a data
byte on these ports would therefore reset the corresponding flip-flop.

Now let’s look at the individual devices’ management programs. The software
that checks Tx is identical to the one examined in the example in Section 4.2.1,
so here, we will only look at the software for Rx. What follows is the definition
of the Data Ports and the State Port:

DATA B EQU 01h ; IB input port (Data Port)

DATA C EQU 02h ; IC input port (Data Port)

DATA D EQU 03h ; ID input port (Data Port)

STATP EQU 00h ; IA input port (State Port)

We also define the output ports that we use to visualize data after they are
received for testing purposes.

OUT B EQU 01h ; OB output port (OUT B)

OUT C EQU 02h ; OC output port (OUT C)

OUT D EQU 03h ; OD output port (OUT D)

We define the link to the reset, initialize the Stack Pointer, and then zero
output ports OUT B, OUT C and OUT D:

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; set A = 0

OUT (OUT B),A ; zero the three output ports

OUT (OUT C),A

OUT (OUT D),A

The main loop first calls the TASK RX subprogram, which was introduced to
simulate the receiver’s execution of its primary task (which does not concern
interface management). Right after, Rx focuses on its peripherals (goes to
read the STATP port) and saves their states in register E.

MAIN: CALL TASK RX ; simulate a generic and independent task,

; executed in the program main loop

IN A,(STATP) ; read the State Port

LD E,A ; copy the state to E

Polling the devices implicitly resolves the “recognition” problem since it makes
it possible to identify the device to serve through reading the state port. The
“priority” issue is solved by testing high priority devices first.

We’ve chosen to focus on devices B, C and then D in order. As written in the
comments, we first check the SR-B flip-flop and if there is no data from Tx
B, we jump to the next test (TEST2).
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If there is a data byte, we accept it from the DATA B port, simulate a certain
process time for it (by calling the PROCESS subprogram), and produce the
received data on the test OUT B output.

TEST1: BIT 2,E ; check the SR-B flip-flop

JP Z,TEST2 ; jump if there is no new data

IN A,(DATA B) ; read the byte from DATA B

CALL PROCESS ; simulate a latency time

OUT (OUT B),A ; copy the data byte to OUT B

The other devices are managed in the same way. Finally, when all of the
devices have been served, we go back to MAIN.

TEST2: BIT 1,E ; check the SR-C flip-flop

JP Z,TEST3 ; jump if there is no new data

IN A,(DATA C) ; read the byte from DATA C

CALL PROCESS ; simulate a latency time

OUT (OUT C),A ; copy the data byte to OUT C

TEST3: BIT 0,E ; check the SR-D flip-flop

JP Z,ENDTEST ; jump if there is no new data

IN A,(DATA D) ; read the byte from DATA D

CALL PROCESS ; simulate a latency time

OUT (OUT D),A ; copy the data byte to OUT D

ENDTEST: JP MAIN ; go back to MAIN

The subprograms called by the main loop are as follows. For testing purposes,
they use delay loops to simulate the time it takes to execute a certain task
(the set times are purely symbolic).

TASK RX: LD C,55 ; simulate a generic task

TASK: DEC C ; 4 +

JP NZ,TASK ; 10 = 14 cycles; 14 x 55= 770 cycles +

RET ; 17 (call) +7 (ld C) +10 (ret) = 804 cycles

PROCESS: LD C,10 ; simulate a latency time

PRO: DEC C ; 4 +

JP NZ,PRO ; 10 = 14 cycles; 14 x 10= 140 cycles +

RET ; 17 (call) +7 (ld C) +10 (ret) = 174 cycles

The polling technique is a valid way to solve the problem of servicing the
peripherals. It is used when the system needs the execution times to be highly
predictable. The execution time of the main loop is documentable, as are the
time and order in which the devices are polled. This makes it possible to know
exactly when a certain action will be executed, which makes the behavior of
the software predictable.
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However, in systems where it is necessary to deal with the data sent by pe-
ripherals as quickly as possible, polling is not the best technique. Suppose the
worst-case scenario when a new data byte is sent immediately after the poll.
In this case, the peripheral has to wait for a repetition of the entire loop,
which includes the next polls, the tasks to execute in the main loop and the
previous polls. Only after all that will the new data be managed, and this
is unacceptable for certain operations, for example reading an important or
“critical” error code.

In these systems, questioning the peripherals can be more efficient if we use
the interrupt technique, though this would mean sacrificing some of the pre-
dictability of system execution times.

4.4 Interrupt techniques

Interrupt techniques consist in peripherals being able to interrupt the normal
functioning of the processor to ask for a specific “service”. These techniques
are different from polling because they don’t require the processor to contin-
uously control the peripherals.

For example, there are specific situations (such as receiving an alarm message
in an industrial plant) where a delay with which the processor starts executing
the requested service is unacceptable. This is the case of handling by polling.
In these cases, we use interrupts.

Interrupts are possible because the processor is equipped with dedicated hard-
ware. The method is based on one or more specialized inputs, which are usually
called INT or IRQ (“Interrupt Requests”). They make it possible to use hard-
ware to request the execution of specialized software, the “interrupt handlers”.
Interrupt inputs work directly on the processor’s sequencer.

In the DMC8, the interrupt request occurs when an external device activates
(at ‘0’) at least one of the lines IRQ2, IRQ1 or IRQ0 (as described in Sec-
tion 2.1.5).

For simplicity’s sake, when the situation permits, we will refer to the base
version of the component available in the Deeds simulator library (“DMC8
Microcomputer”, see Section 2.4.1), where lines IRQ2, IRQ1 and IRQ0 are
connected internally (see the following figure) and are accessible through input
Int (see the arrow).
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The processor’s sequencer pays attention to the interrupt request input Int
at the end of the execution of the current instruction (the one being executed
when the request is made).

The following figure shows the sequence of operations that follow an interrupt
request (represented by the red arrow). For the moment, we will not go into
greater detail on this.

In this example, the moment the request is made, the RLA instruction is
being executed. RLA execution is completed but, after this, the program’s
flow of execution is interrupted. The “interrupt handler” is executed instead,
through a sort of forced jump. The handler includes the code (developed by
the programmer) required to satisfy the service requested.

When it is finished, execution
of the interrupted program re-
sumes. There are clear similar-
ities with the call and response
subprograms.

It should be pointed out, how-
ever, that the interrupt handler
was not launched by a CALL
instruction inserted into the
code. Rather it occurs through
a hardware event, which by its
nature can happen at any mo-
ment, asynchronously with the
interrupted program.

A subprogram is called in syn-
chronous mode because it is the
program itself that operated it
at a specific point in the algo-
rithm’s sequence.

4.4.1 Enabling and disabling interrupts

The sequencer allows interrupt requests to be “masked” (ignored). To that
end, the DMC8 has an internal IFF flip-flop (Interrupt Flip-Flop), which
enables interrupts.

IFF = ‘0’ IFF = ‘1’

Disabled Enabled

The system reset zeroes the IFF: the processor starts with interrupts disabled.
It is the programmer’s job to make sure that the interrupts are enabled if the
system architecture requires it. Two enable/disable instructions are available
and they change the value of IFF.
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EI ; Enable Interrupts (IFF ← ‘1’)

DI ; Disable Interrupts (IFF ← ‘0’)

For reasons that will soon become clear, the EI instruction does not imme-
diately enable interrupts. Rather their enabling is postponed until the next
instruction has finished being executed.

The programmer inserts the EI instruction where necessary, usually after the
system initialization instructions before entering the program’s main loop.

We can also use these instructions to temporarily mask (and thus rehabilitate)
interrupt requests. This can be useful when a group of instructions has to be
executed without interrupts, that is in atomic mode3.

For example, we might find ourselves in a situation where we need to respect
specific time constraints and we can’t interrupt the processor during the exe-
cution of certain sequences of instructions. So, let’s insert a pair of DI and EI
instructions as follows:

DI ; disable interrupts

... ; the atomic sequence starts here...

...

... ; and ends here

EI ; re-enable interrupts

In commercial processor models, we find different standards of interrupt re-
quests. Some interrupt inputs ignore any disabling of the mechanism, which
causes a “Not Maskable Interrupt”. This is good for handling critical events
like an alarm signal4.

4.4.2 Interrupt mechanisms in detail

As we saw in Section 2.1.5, interrupt requests in the DMC8 are done through
lines IRQ2, IRQ1 and IRQ0. Let’s assume the processor is executing a certain
program when at least one of the inputs IRQ2, IRQ1 or IRQ0 is activated (at
‘0’) by a peripheral device requesting an interrupt.

Now let’s examine DMC8’s response mechanism to the interrupt. The fol-
lowing figure shows the steps of the “interrupt sequence”, the launch of the
interrupt handler and the return to the interrupted program.

1. While the processor is executing a program, it receives an interrupt request
(at any time).

2. The current instruction is completed (RLA, in this example). The se-
quencer acknowledges the interrupt request only when RLA is ended.

3 From the Greek “àtomos” which means “cannot be divided”.
4 The DMC8 only supports maskable interrupts.
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3. If IFF = ‘0’, the interrupts are disabled so the request is ignored. Then,
as if nothing had happened, the processor goes on to the next instruction
in the program without missing a clock cycle.

4. If interrupts are enabled, however, we start the sequence, but IFF is auto-
matically zeroed to prevent further interrupts. This is necessary because
an interrupt request is still active while the handler is being executed and
another one would cause an interrupt of the interrupt.

5. The address of the instruction after the last one executed is saved on the
top of the Stack (similarly to what happens with a CALL instruction).
Let’s keep in mind that at this moment, the processor only has the address
of the next instruction to execute in the PC (‘LD E,A’ in this example).

6. The processor executes a jump to the location defined by the combination
of lines IRQ2, IRQ1 and IRQ0. The programmer needs to have allocated
the specific interrupt handler at that address.

7. The processor executes the handler (following this, we assume that the
peripheral removes the interrupt request).

8. An RET instruction returns the control to the interrupted program by
retrieving the return address from the Stack (where it had been saved
before the jump to the handler). RET is preceded by an EI, which enables
the interrupts after the RET is executed. We have seen that the effect of
EI is postponed to allow the handler to be entirely executed before any
new interrupt comes.

9. The processor goes back to executing the interrupted program.

From step 3 to 6, this sequence lasts 11 clock cycles overall. Six of these cycles
are used by the processor to save the return address in the Stack. In the first 5
cycles of the sequence, the processor informs the outside that it has accepted
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the interrupt request by activating the output (active low) INTA (Interrupt
Acknowledgment).

The sequence is represented in the following timing diagram. Here we can see
the activation of one of the interrupt request lines (IRQn) at ‘0’.

Notice that it isn’t the transition of the line that requests the interrupt but
simply the low level. This means that the device will keep the line active until
the request is accepted. Assuming that the interrupts are enabled (IFF = 1),
the processor starts the interrupt sequence when the execution of the current
instruction is completed.

Output INTA is activated in the first 5 clock cycles of the interrupt sequence.
During this time, the processor prepares the next operations internally. Line
INTA is returned to the idle state and over the next 6 clock cycles, the pro-
cessor saves the content of the Program Counter on the Stack.

At this time, the Program Counter has the address of the instruction that
would have been executed if the processor had not been interrupted. Saving
the content of the PC allows us to place the return address on the top of the
Stack and so to restart the program as of the next instruction (that hasn’t
been executed yet).

After saving the return address, the sequencer overwrites the Program Counter
with a jump address that depends on the combination of lines IRQ2, IRQ1
and IRQ0, as explained in Section 2.1.5. To request an interrupt, we have up
to seven different handlers available.

Interrupts are called “vectored”, in the sense that the handlers’ addresses
(the “vectors”) are arranged in the memory and are available in the DMC8
through an index made up of the combination of lines IRQ2, IRQ1 and IRQ0.
For ease of reference, we’ve reprinted here the table from Section 2.1.5.

IRQ2 IRQ1 IRQ0 Interrupt Handler Address

1 1 1 No Request -

1 1 0 Interrupt 1 0008h

1 0 1 Interrupt 2 0010h

1 0 0 Interrupt 3 0018h

0 1 1 Interrupt 4 0020h

0 1 0 Interrupt 5 0028h

0 0 1 Interrupt 6 0030h

0 0 0 Interrupt 7 0038h
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The first line corresponds to the case where there is no interrupt. In the other
lines, we find the addresses of the seven possible handlers, which correspond
to the different activations of IRQ2, IRQ1 and IRQ0.

Notice that the area of memory reserved for the first six interrupt handlers
is only 8 bytes each. This is just enough space to insert a jump to a larger
memory area where we can memorize the handler’s code.

Introductory example of an interrupt handler

Here, we show an initial example of an interrupt handler. For simplicity’s sake,
we’ll refer to the base version of the “DMC8 Microcomputer” (Section 2.4.1),
which has one input (Int) that connects the three lines IRQ2, IRQ1 and IRQ0
together. Therefore, the handler’s code must be allocated as of location 0038h,
based on the table.

Let’s assume that a peripheral has sent data to the microcomputer and at the
same time, activated input Int. The processor executes the interrupt sequence
that in order, disables the interrupts, saves the return address and jumps to
the handler (at 0038h). The code of this example is as follows:

ORG 0038h

IHANDLER: PUSH AF ; save A and Flags contents on the Stack

IN A,(INP) ; copy INP to OUTP (this is an example

OUT (OUTP),A ; of operation requested by the peripheral)

POP AF ; restore the contents of A and Flags

EI ; re-enable interrupts

RET ; return to the interrupted program

The processor executes the first instruction of the handler, PUSH AF. The
instruction saves the content of register A and the flags on the Stack.

The next two instructions, IN and OUT, basically represent the operation re-
quested by the interrupting device. For simplicity’s sake, let’s use the example
of a request to copy an input port INP to an output port OUTP.

When this task has been completed, the handler restores the previous con-
tents of register A and the Flags. Within the interrupt sequence the Program
Counter is saved to be able to return to the calling program. Note that, aside
from this, the sequence does not automatically save any other register. This
means that it is the programmer’s job to insert the right pairs of PUSH and
POP to save and restore the registers that the handler modifies.

Here, the handler only uses the accumulator so the PUSH AF and POP AF
pair has been inserted. This operation is necessary because the interrupt man-
ager is executed asynchronously with respect to the program that was inter-
rupted. This means that we need to make it so that, on returning to the
interrupted program, this will find the same exact contents in the internal
registers as there were before. The interrupt handler must leave the internal
state of the processor perfectly unaltered.
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The routine ends with the RET instruction, as in the case of subprograms
but here there is an EI preceding it. This way, the interrupts, which were
automatically disabled by the interrupt sequence are enabled again (as men-
tioned before, after RET is executed). RET brings the control back to the
interrupted program, which goes back to work.

In this example, we have only considered the aspects related to the interrupt
handler but ignored those related to activating and deactivating the request,
which will be dealt with in the following pages.

4.4.3 Example of an interface with an interrupt request

Let’s take another look at the interface circuit with handshake hardware that
we studied in Section 4.2.1. Here, we have made changes so that it can be
handled with the interrupt technique rather than by polling. The figure below
highlights the additional parts in red boxes.

From the side of the receiver, the Ready line, which is already available to
the processor for polling through the state port, is used here to request an
interrupt (with the addition of a NOT since input Int is active low). When a
data byte comes from Tx, it produces an interrupt request for Rx’s processor,
which can intervene in the interface only when necessary, without having to
poll the state port.

From the other side, the transmitter receives an interrupt every time the Busy
line goes to ‘0’, that is when Rx shows it’s ready to receive data. The data
will no longer be sent in the main loop of Tx, but will be executed through
interrupt requests.

The Tx and Rx subsystems’ new way of working constitutes a great advan-
tage. The receiver can continue to work on other tasks without having to
periodically check for new data from the transmitter. It can handle requests
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only at the moment they are needed. The transmitter can also work on its
own main tasks and only take care of transmitting data when Rx requests it.

Handling Rx through interrupts

Let’s look at one example of Rx software management. We define the data port
and the output port (the state port is not defined because it is unnecessary,
as we will see in the code).

OUTP EQU 00h ; OA output port (OUT)

DATAP EQU 01h ; IB input port (Data Port)

We insert the usual connection to the reset at 0000h, which makes us jump to
the start of the program (START). We’ll add another jump that will let us go
from the predefined location 0038h to the interrupt handler (IHANDLER).
For our own convenience, we’ll allocate that together with the rest of the code.

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0038h

JP IHANDLER ; jump to the interrupt handler

ORG 0100h

The program initializes the Stack Pointer and then zeroes the output port.
Then before going into the main loop, it enables interrupts with the EI instruc-
tion. In the loop, we find a call to subprogram TASK RX, which simulates a
general task unrelated to the interface handling.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; initialize the output port to zero

OUT (OUTP),A

EI ; enable interrupts

MAIN: CALL TASK RX ; simulate a generic task that

JP MAIN ; is executed in the main loop

Note that the handshake network is identical to the one in Section 4.2.1,
except that there is an added connection to line Int. We’ve seen that a Strobe
signal (which indicates that a new data byte has been received) activates the
SR flip-flop output Ready. In that version, the receiver’s program went to read
the state port by polling, to check the state of SR.

In this circuit, however, activating SR directly produces an interrupt request
to the processor. This interrupts the execution of the main program and
“launches” the interrupt handler (its code is presented here below).

IHANDLER: PUSH AF ; save A and Flags on the Stack

IN A,(DATAP) ; acquire the received data byte

OUT (OUTP),A ; copy it to the output port

POP AF ; restore the registers saved before

EI ; re-enable interrupts

RET ; return to the interrupted program
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The interrupt handler reads the data byte on the Data Port DATAP and pro-
duces it on output port OUTP. Because of the handshake hardware network,
reading DATAP automatically resets the SR flip-flop, allowing it to log the
arrival of new data again.

From the receiver’s perspective, the important thing is that when the SR flip-
flop is zeroed, it also deactivates the interrupt request. We can be sure that
once the handler has been executed, the interrupt request has been deactivated
and the processor can go back to carrying out the tasks that it had left undone
without being interrupted again until new data arrive.

For the sake of completeness, the TASK RX is shown below. As explained
before, its purpose is only to simulate the execution of a generic task.

TASK RX: LD C,22 ; simulate a generic task

TASK: DEC C ; 4 +

JP NZ,TASK ; 10 = 14 cycles; 14 x 22 = 308 cycles +

RET ; 17 (call) +7 (ld C) +10 (ret) = 342 cycles

Handling Tx through interrupts

The code for the transmitter is similar to that of the receiver. In the first
couple lines, we define the output Data Port but not a State Port, which
would serve no purpose here. The code also defines an 8-bit DATA variable,
which simulates the data to transmit.

DATAP EQU 01h ; output Data Port (OB)

DATA EQU 0FC00h ; variable containing the data to transmit

The settings of the reset (0000h) and interrupt (0038h) locations is the same
as that of Rx. They send us back to the START and IHANDLER labels.

ORG 0000h ; link to the reset

JP START ; jump to the program start

ORG 0038h

JP IHANDLER ; jump to the interrupt handler

ORG 0100h

We initialize the Stack Pointer and immediately after, we zero DATA (it
is managed only by the interrupt handler), and then enable the interrupt
mechanism (with the EI instruction). In the main loop, we simulate carrying
out a general task by calling the TASK TX subprogram. Notice that in the
main loop we do not take care of data transmission. That is delegated entirely
to the interrupt handler.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,0 ; initialize the variable DATA with

LD (DATA),A ; simulated data to transmit

EI ; enable interrupts

MAIN: CALL TASK TX ; simulate a generic task that

JP MAIN ; is executed in the main loop
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The interrupt is executed every time the Busy line is brought to ‘0’, that is
when Rx tells Tx to get ready to receive a new data byte.

IHANDLER: PUSH AF ; save A and Flags on the Stack

LD A,(DATA) ; read the variable DATA and increment it

INC A ; to simulate a new data byte to transmit

LD (DATA),A ; save the new value into the variable

OUT (DATAP),A ; transmit it though the Data Port

POP AF ; restore the register contents saved before

EI ; re-enable interrupts

RET ; return to the interrupted program

We can see that the PUSH AF and POP AF instructions in the interrupt
handler are necessary to preserve the internal state of the processor.

First, a new data byte is simulated by incrementing the DATA variable. Then,
the new value is copied to the Data Port. The output writing launches the
handshake mechanism, so Rx will acquire the new data. When the Busy line
goes back to ‘0’, it relaunches a new interrupt request in Tx.

The EI and RET instructions allow us to go back to the interrupted program
and they enable the interrupts (which were disabled before the handler was
launched) again.

Finally, for the sake of completeness, the code for the TASK TX subprogram is
shown below. Like the subprogram for Rx, this simulates a general transmitter
task, independent from data transmission.

TASK TX: LD C,10 ; simulate a generic task

TASK: DEC C ; 4 +

JP NZ,TASK ; 10 = 14 cycles; 14 x 10 = 140 cycles +

RET ; 17 (call) +7 (ld C) +10 (ret) = 174 cycles

4.5 Using vectored interrupts

Now, let’s look at a general case where there are multiple devices that can
request an interrupt from the processor. Here, we need to insert the appro-
priate hardware that will allow us to select an interrupt handler from those
available, based on the specific device that requested the interrupt. It is also
important to adopt criteria that will allow us to assign priority if we have
simultaneous requests from multiple devices.

There are many solutions to this problem. For the “DMC8 Enhanced Micro-
computer” component (included in the Deeds library, see Section 2.4.1), we
decided to insert a priority encoder among the devices and the CPU, as shown
in the following figure.

The circuit here is purely combinational. If none of the input lines to the
encoder is active (i.e. if they are all high), the processor’s interrupt requests
will be high and there is no interrupt request for the CPU.
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If one or more inputs is brought low, however, a configuration appears and
corresponds to the highest priority input that is activated. The following truth
table describes the encoder:

Int7 Int6 Int5 Int4 Int3 Int2 Int1 IRQ2 IRQ1 IRQ0 Interrupt

1 1 1 1 1 1 1 1 1 1 No request

1 1 1 1 1 1 0 1 1 0 Int. 1

1 1 1 1 1 0 - 1 0 1 Int. 2

1 1 1 1 0 - - 1 0 0 Int. 3

1 1 1 0 - - - 0 1 1 Int. 4

1 1 0 - - - - 0 1 0 Int. 5

1 0 - - - - - 0 0 1 Int. 6

0 - - - - - - 0 0 0 Int. 7

For example, if only input Int5 is active, the configuration ‘010’ appears in the
output. It corresponds to interrupt request 5. If another device also activates
a line, for example Int2, the encoder ignores it since it has a lower priority.

However, if we activate line Int7 (the high-
est priority of all), the code goes to value
‘000’ in the output, corresponding to in-
terrupt request 7. All the other requests
are ignored.

The “DMC8 Enhanced Microcomputer”
(introduced in Section 2.4.1) has seven in-
terrupt request lines (the detail is indi-
cated by the arrow in the figure at the
right).
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4.5.1 Considerations on recognition and priority

The network discussed above resolves two problems, recognizing the device
that made the interrupt request and handling the priority among the devices
making simultaneous requests. Then recognition happens formally since this
network associates only one handler to each device.

The priority is embedded in the decoding system; a high priority request
makes the network ignore lower priority requests. Note that having multiple
pending requests at the same time means that only the highest priority will
initially be served. Every device that requests an interrupt keeps the request
active until it is fulfilled.

As soon as the highest priority device has been served, it must deactivate the
request. Then the encoder provides the code corresponding to the device with
the next highest priority (that is actively making a request).

4.5.2 Extending to a higher number of devices

Here, we analyze a system that has more than seven devices that can interrupt
the processor. Since the processor has only 7 interrupt vectors, we need to find
a way for multiple devices to share the same vector.

Here, we have chosen to change the connection of the lower priority devices
and keep the better efficiency for those of higher priority.

As shown in the following figure, we have introduced a logic gate that conveys
the requests of the lower priority devices (here, they are: 1A, 1B, 1C and 1D)
into one single line. The AND gate activates line Int1 if there is one or more
interrupt request from devices 1A, 1B, 1C or 1D5.

5 Note that an AND gate, interpreted in “negated logic” (i.e., in terms of active
low signals), generates ‘0’ when at least one of the inputs is at ‘0’.
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Clearly, there is no way to know through this encoding hardware which one
of these four devices has requested the interrupt or which has priority over
the others. We have to settle for doing this operation through software in
interrupt handler 1.

First of all, this software solution should identify the device that requested
the service by executing a test on the devices involved using the corresponding
State Ports. So, we poll the devices after an interrupt request. Once the device
is recognized, the interrupt routine executes the task requested.

The order of execution in the test allows us to assign a priority scale for the
various devices (1A, 1B, 1C and 1D) so that the highest priority device’s
request is granted first if more than one request comes simultaneously.

4.5.3 Example of handling vectored interrupts

Here below is a possible outline of the code dealing with handling vectored
interrupts. This example includes polling for the lower priority devices, which
is in interrupt handler 1. At the beginning, we define a state port (STATP)
and insert the usual jump to the start of the main program.

STATP EQU 00h ; input State Port (IA)

ORG 0000h ; link to the reset

JP START

Then we insert the definitions related to the vector table, i.e. the jumps to all
the vectored interrupt handlers.

ORG 0008h ; interrupt 1

JP HINT1

ORG 0010h ; interrupt 2

JP HINT2

ORG 0018h ; interrupt 3

JP HINT3

ORG 0020h ; interrupt 4

JP HINT4

ORG 0028h ; interrupt 5

JP HINT5

ORG 0030h ; interrupt 6

JP HINT6

ORG 0038h ; interrupt 7

JP HINT7

The main program (not of interest to us in this explanation) is shown here in
the form of a simple trace of the code. It includes the necessary definition of
the Stack Pointer (it is important to remember that interrupts use the Stack).
Also, interrupts are enabled (EI) before entering the main loop.
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ORG 0100h ; main program

START: LD SP,0FFFFh ; initialize the Stack Pointer

... ... ; ...omissis...

EI ; enable interrupts

MAIN: ... ... ; ...omissis...

JP MAIN

Now let’s define the lines of code for the individual handlers in order of priority
(just for convenience). Let’s start with the handler of interrupt 7.

HINT7: PUSH AF ; save the contents of the registers in use

;... ; handler 7 (with the highest priority)

POP AF ; restore the registers saved before

EI ; re-enable interrupts

RET ; return to the interrupted program

This is clearly just an outline like those of the other interrupt handlers (iden-
tical in form) which we do not show up to interrupt handler 2.

HINT2: PUSH AF

;... ; handler 2

POP AF

EI

RET

To define the lowest priority interrupt handler, let’s assume that devices 1D,
1C, 1B and 1A (shown in the previous figure) submit interrupt request lines
Int1D, Int1C, Int1B and Int1A on bits 7, 6, 5 and 4, respectively, of the
STATP state port.

After the register A and the Flags are saved, the code of the handler proceeds
by polling the bits of the State Port in order of priority (we assume 1D has
the highest priority and 1A the lowest).

Based on the state of lines Int1D, Int1C, Int1B and Int1A, we jump to the
corresponding part of the handler’s code.

HINT1: PUSH AF ; save A and Flags contents on the Stack

IN A,(STATP) ; read the State Port

BIT 7,A ; check line !Int1D

JP Z,Handle1D ; jump if it requires to be served

BIT 6,A ; check line !Int1C

JP Z,Handle1C ; jump if it requires to be served

BIT 5,A ; check line !Int1B

JP Z,Handle1B ; jump if it requires to be served

The case of the handler of device 1A is evaluated by exclusion. In the following,
we see the code outlines for the interrupt handler of each device. Each handler
ends with a jump to the exit code (EXIT) where the previously saved register
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A and the Flags are restored and the interrupts re-enabled. Finally, we go
back to the interrupted program.

Handle1A: PUSH ... ; save all the registers in use

;... ; handle device 1A

POP ... ; restore the saved registers

JP EXIT

Handle1B: PUSH ... ; save all the registers in use

;... ; handle device 1B

POP ... ; restore the saved registers

JP EXIT

Handle1C: PUSH ... ; save all the registers in use

;... ; handle device 1C

POP ... ; restore the saved registers

JP EXIT

Handle1D: PUSH ... ; save all the registers in use

;... ; handle device 1D

POP ... ; restore the saved registers

;

EXIT: POP AF ; restore A and Flags saved before

EI ; re-enable interrupts

RET ; return to the interrupted program

If more than one of these devices interrupts at the same time, the first one
tested is served first. After leaving the handler, the hardware makes a new
interrupt request from the devices that haven’t been served yet, so the code
is executed again until all the requests are satisfied in order of priority.

4.6 Interrupt timers

We have seen that if a system doesn’t use interrupts, the processor executes
one single program. This program can be made up of many different mod-
ules but they will always be executed under the strict control of the “main
program”. This method works for simple systems but we generally find that
in real cases the processor needs to satisfy external needs that emerge at
unpredictable times and are often urgent and irrevocable.

For example, in a system that receives “alarm signals” from a plant, the var-
ious input/output devices involved must request services from the processor
through interrupts, so that they are satisfied as quickly as possible.

Another example is a system that acquires data from one or more sensors.
Their output cannot be neglected by the processor otherwise important infor-
mation could be lost.
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There are other cases where the specifications require the execution of tasks
at precise time intervals. Some examples are the request to see data on a panel
at regular intervals or having them transmitted periodically to a control and
supervision room.

If we tried to resolve the problem with a purely software approach, we would
have to write a time-measuring program and in the meantime carry out other
tasks such as cyclically checking a sensor, for example. We could write a delay
subprogram and include the instructions for checking the sensor in the loop.
However, this method is only applicable in very simple systems. If there were
many sensors and many tasks to do with them or if the timelines were different
among them, the source code would be complex and convoluted. Also, timing
might not be reliable or simply approximate.

Clearly in these cases, we need to choose another path. This is why systems
often include one or more hardware timing devices, which can request inter-
rupts at pre-established times. From now on, we will use the term “timer”,
which is commonly used in practice and in the literature.

Timers are generally programmable (see the figure
at the right), in that they have one or more con-
trol ports that the program uses to activate them,
deactivate them, define the time interval or set a
“one shot mode” or a “cyclic mode”. Timers use
pre-settable counters that are timed by the system
clock and handled by a control logic that sets the
counter according to their programming.

4.6.1 A specialized timer

For simplicity’s sake, we will use pre-defined hardware timers that are not
programmable by the processor. The component used here is called an “In-
terrupt Timer” and is available in the Deeds library among the counters (see
below).

Let’s assume we are working with a system that has only one interrupting
device, the timer. We refer to a “DMC8 Microcomputer” (see Section 2.4.1)
and its one interrupt request line Int (as shown in the following figure).
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In this example, the microcomputer interacts with the timer by using lines Int
and IntA, which are connected to timer lines Int and CInt (“Clear Interrupt”)
respectively. The timer also has a reset input and a clock input (Res e Ck),
which are connected to RsOut and CkOut of the microcomputer.

We won’t go into the timer’s internal network since it is enough to examine
how it behaves. The timer functions cyclically with a period of ∆T (for exam-
ple: 1mS ). At the end of each interval ∆T, the device activates request line
Int. This periodic request is called a “Timer Tick”.

To set period ∆T in the
design phase, we have to
open the Interrupt Timer
properties dialog box (see
the figure at the left)
by double clicking on the
component.

Aside from being able to
edit the label of the com-
ponent, we can also define
the desired time ∆T by se-
lecting it from the list of
available values.

It is important to declare the clock period the timer will use in the “Clock
Cycle” field. The system calculates the number of clock cycles based on the
∆T that we want and the given clock period. This defines the “module” of
the counter in the timer.

Notice that ∆T is rigorously guaranteed by the timer’s internal hardware and
is not influenced by the processor’s interrupt response times. Cyclically, every
∆T, the timer activates line Int.

Let’s take a look at the following figure that shows the timing diagram of the
signals exchanged between the timer and the microcomputer following the
activation of the Int request, which happens in clock cycle (a).
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If interrupts are enabled, the processor stops the current instruction and starts
the interrupt sequence in the clock cycle (b) by activating IntA. The timer
receives IntA on line CInt and following this, deactivates interrupt request Int
in the next cycle (c). At the end of the interrupt sequence, in (d) the processor
launches the interrupt handler.

Remember that interrupt request Int must be withdrawn by the device that
made it before the corresponding handler has been fully executed. If it re-
mained active, the processor would be interrupted again.

With the timer, the next interrupt should only come when the next ∆T in-
terval expires. To achieve this, we have used the simplest, most immediate
method: to reset the request as soon as the processor activates line IntA. In
real situations, we have many devices that can generate interrupts so requests
should be deactivated differently and most importantly, selectively.

Now, let’s look at a case where the interrupts are temporarily disabled6, at the
moment the timer activates line Int. Because the processor doesn’t memorize
interrupt requests, they must be kept active until they are accepted. Since
the timer’s request remains active, it will be satisfied (albeit late) when the
interrupts are re-enabled.

Note that for the mechanism to function, disabling should not last longer than
a period ∆T, otherwise we lose a “Timer Tick”.

4.6.2 Example of a timer interrupt: blinking lights

Our first example of the use of a timer is a system that flashes an LED light,
as shown in the following schematic.

We have connected an LED light to bit 7 of the OC port of a “DMC8
Microcomputer” (see Section 2.4.1). The timer has been connected and set
(∆T = 1mS ) as it was in Section 4.6.1. We want the LED light to stay on for
1mS, and off for the same amount of time7.

6 Remember that the program can disable and then re-enable interrupts.
7 In a real system, this time would be too short to be able to see the LED light

flash. However, if we set the clock animation to a frequency of 10KHz (that is
1000 slower than the nominal frequency), and simulate in interactive mode, the
LED light turns on for one second and turns off for the same amount of time.
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In the first couple of lines of code, we define the output port (LED) and a
variable (LEDMEM), which we use to store a software copy, in the RAM, of
the last byte copied to the port. Then we define the jumps to the start of the
program (START) and to the interrupt handler (HINT).

LED EQU 02h ; OC output port

LEDMEM EQU 0FC00h ; software copy of the output port

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

After we initialize the Stack Pointer, the output port LED and the corre-
sponding software copy LEDMEM. The LED light will be off at reset. Before
entering the main loop, the EI instruction enables the interrupts.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; and the output port LED

OUT (LED),A ; start with LED off

LD (LEDMEM),A ; copy the LED state to the software copy

EI

For our blinking light, it’s possible for the main loop to be empty. However, it
should be pointed out that a standard system could perform any task in the
main loop and those tasks would be totally independent from what is carried
out in the interrupt program. Therefore, we have inserted in the main loop a
call to a standard subprogram called PROCESS.

MAIN: CALL PROCESS ; execute a generic task (any one)

JP MAIN

To be complete, we show the PROCESS subprogram, which could execute
any task but here, is left blank.

PROCESS: NOP ; execute any task

RET

Periodically, every 1mS, the timer requests an interrupt, so the interrupt han-
dler HINT is executed. The code also has our usual PUSH, POP, EI and
RET, which have already been copiously described. The part on managing
LED lights, however, has been highlighted.

In the following listing, we can see that the timer guarantees that the HINT
handler is launched cyclically, every millisecond. So, upon each call we only
need to invert the state (on/off) of the LED light. The state is stored in bit
7 of variable LEDMEM, so (as is written in the code) we read the variable,
invert the value of bit 7, re-save it in the memory and transcribe it on the
output port so it turns on (or off) the LED light.
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HINT: PUSH AF ; save A and Flags

LD A,(LEDMEM) ; get the software copy in A

XOR 10000000b ; invert bit 7

LD (LEDMEM),A ; save back the software copy

OUT (LED),A ; copy the new state to the port

EXIT: POP AF ; restore A and Flags

EI ; re-enable interrupts

RET ; return to the interrupted program

Note that the interrupt handler generally cannot trust the contents of the
processor’s registers. This is because they are normally used by the main
program and the subprograms it calls. This is why if the interrupt handler
has to save information, it has to rely on the variables in the memory (such
as LEDMEM in this example). In doing so, it must always save and refresh
the contents of the registers it uses.

Changes to the blinking light

Here we have a change in the software that manages the blinking light, which
leaves the hardware and settings unchanged, especially the ∆T of the timer
at 1mS. However, we want to bring the on/off times to one second by making
the microcomputer work with the clock at a frequency of 10MHz, and the
interrupt handler being called every 1mS.

In order to invert the state of the LED light each second, when the handler
is called it has to execute a count for 999 calls. Then on the thousandth call,
it inverts the state of the LED light and then resumes counting.

In the following, we only show the changes to the previous code. Among the
initial definitions, we now have an additional 16-bit variable (TIME), which
is used to measure time, or more precisely, the number of interrupt calls.

LED EQU 02h ; output port OC

LEDMEM EQU 0FC00h ; software copy of the port

TIME EQU 0FC01h ; time count variable (16-bit)

Here we omit the link to the reset and the interrupt, since they are identical
to the previous example. However we show the initializations in full; the new
variable TIME has been added here and initialized with the number 1000. As
we shall soon see, this is to count back the calls in the handler’s code. The
16-bit constant is loaded in register HL and then in the memory.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b ; and the output port

OUT (LED),A ; LED off on start

LD (LEDMEM),A ; copy the LED state to the software copy

LD HL,1000 ; save the constant 1000 in TIME (16-bit)

LD (TIME),HL

EI
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For greater clarity, we’ve shown the main loop as well. It is actually identical
to the previous case so the same observations apply here. We’ve omitted the
code of the PROCESS subprogram, which is identical to the previous one.

MAIN: CALL PROCESS ; execute a generic task (any one)

JP MAIN

Let’s pay special attention to the new interrupt handler where the differences
have been highlighted in another color. Among the registers saved in the
beginning, we’ve added HL, which is used by the handler as a time counter.

HINT: PUSH AF ; save A, Flags and HL

PUSH HL

Before updating the state of the LED light with the same instructions sequence
as the previous example, we need to check whether it is time to execute it
(i.e. if one second has passed).

The processor executes this check for every call, that is every 1 mS. It copies
the TIME variable in HL, decrements it (on 16 bits), and then updates the
memory with the new value. The count is executed backward from 1000. We
need to check each time if it has reached 0.

Since the 16-bit decrement instructions do not change the flags (see Sec-
tion 3.3.2.5), we insert two instructions (LD A,H and OR L) to evaluate
whether HL goes to zero. If it hasn’t reached 0 yet, the conditional jump will
have us leave the handler by going to the “exit code” (EXIT).

LD HL,(TIME) ; copy the TIME variable to HL

DEC HL ; decrement it and

LD (TIME),HL ; update it in memory

LD A,H ; check if HL has been zeroed

OR L

JP NZ,EXIT ; exit if it is not

Otherwise, we move on to re-initialize TIME to its initial value, and then
invert the state of the LED light (note that the processor executes this part
of the code once every 1000 handler calls).

LD HL,1000 ; re-initialize HL to 1000

LD (TIME),HL ; and the TIME variable

LD A,(LEDMEM) ; get the software copy in A

XOR 10000000b ; invert bit 7

LD (LEDMEM),A ; save back the software copy

OUT (LED),A ; copy the new state to the port

The exit code adds the content restoration of HL to the previous example.

EXIT: POP HL ; restore A, the Flags and HL

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program
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Closing observations

— The interrupt mechanism guarantees the tasks are carried out with no
need to intervene in the logic of the main program.

— Interrupts that are associated to the timer guarantee a rigorous assessment
of time, which is independent of the main program’s tasks.

— Delay loops haven’t been used to measure time. As a result,the processor’s
computing capacity is not wasted.

4.6.3 Timers and concurrent program execution

When one single program is in execution in our system, the sequence of op-
erations is rigorously determined by the programmer. In a system with many
devices managed through interrupts, there is generally one handler for each.

Each handler can be launched by its interrupt request at any time, that is to-
tally asynchronously from the main program. As a consequence, the individual
interrupts are asynchronous from each other. The handler call order can never
be known ahead of time unless there are clear functional constraints. If an op-
eration ‘B’ needs the results from an operation ‘A’, the order of execution of
the operations must certainly be first ‘A’ and then ‘B’.

When operations ‘A’ and ‘B’ are executed by two different asynchronous
programs, we need to guarantee that the appropriate order of execution is
respected. These operations can be synchronized through the use of shared
variables called “semaphores”, which let the various modules signal when they
are finished executing their operations.

A timer lets us face this type of problem in an orderly way. Therefore, we will
be able to regularly execute tasks that are totally independent of one another
and independent of those carried out by the main program (except for some
that are interrelated like the case described above).

In a way, it is as if we had separate processors, each executing its own program.
In reality, there is only one processor and we will execute various programs
a bit at a time concurrently by breaking down the processor’s computational
capabilities over time8.

The programs that execute operations ‘A’ and ‘B’ described above are exe-
cuted concurrently. We must consider the coherence of the data when exchang-
ing data between concurrent and communicating processes. In other words,
the synchronization mentioned before must allow for the individual processes
to execute atomic sequences so that the interrupt mechanism itself doesn’t
cause partial updates of the data. We can achieve this through a judicious use
of interrupt enable (EI) and interrupt disable (DI) instructions, as described
in Section 4.4.1. In the following section, we will examine some programming
examples including cases that require atomic operations.

8 Multi-user and multi-tasking operating systems (such as Windows®, Linux®,
etc.) are based on these concepts, but outside the scope of this book.
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4.7 Examples of programming and interfacing

The examples in this section9 will let us develop the programming and inter-
facing techniques that use interrupts.

4.7.1 Pulse generator (at system reset)

We want to generate a high level pulse with a duration of 5 mS as of system
reset by using the interrupt technique. The pulse is produced at the PULSE
output, connected to bit 0 of the OC port on a DMC8 Microcomputer (see
the following schematic). Line EN, which is connected to bit 0 of input port
IA, checks if the pulse generation has been enabled.

Assume that the system executes other (unspecified) tasks in the main pro-
gram, which are summarized in a periodical call to the standard PROCESS
subprogram. The “Interrupt Timer” component is programmed to request an
interrupt every 0.1 mS, through line Int. When the processor activates IntA,
this deactivates that request in the timer.

Solution

In the first part of the code, we define:

(a) the addresses of the ports (the same as default),
(b) the constant ‘NCalls’ at 50 (the number of calls to count to get 5 mS =

50 · 0.1 mS ),
(c) the TIME and ENABLED variables, to count the time and to enable pulse

generation, respectively,
(d) a jump to the interrupt handler at the reserved location 0038h.

ENP EQU 00h ; IA input port (EN)

PULSEP EQU 02h ; OC output port (PULSE)

NCalls EQU 50 ; number of timer ticks in 5 mS

9 Remember that all the programs and networks in this text are available on the
Deeds website, ready to analyze, simulate and change.
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TIME EQU 0FC00h ; time count variable

ENABLED EQU 0FC01h ; count enable variable

ORG 0000h

JP START

ORG 0038h ; link to interrupt handler

JP HINT

ORG 0100h

Before entering the main loop, we initialize the Stack Pointer and the TIME
variable at 50. Then we read input EN, copy it in the ENABLED variable
and zero the bit we are not interested in. The fact that the position of EN on
bit 0 corresponds with that of PULSE, also on bit 0, allows us to directly use
the value that is now in ENABLED to immediately activate PULSE (or not).
Finally, we enable the interrupts with the EI instruction.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,NCalls ; and the variable TIME

LD (TIME),A

IN A,(ENP) ; read EN from the port

AND 00000001b ; masks the bits that don’t interest us

LD (ENABLED),A ; and copy EN to variable ENABLED

OUT (PULSEP),A ; activate the output line

EI ; enable interrupts

The main program cyclically calls the PROCESS subprogram, whose content
is not relevant for the present aim (in this example, it’s just a placeholder), but
we assume it engages the processor in some task. Notice that pulse generation
does not interfere with operations in PROCESS (except for periodic interrupts
for a couple microseconds).

MAIN: CALL PROCESS ; execute any task

JP MAIN

PROCESS: NOP ; placeholder for any task

RET

The HINT interrupt handler is executed every 0.1 mS thanks to the timer’s
periodic interrupt requests. Note that this time is an assurance for our system
so we can take it as a reference point to measure the amount of time that has
elapsed as of reset.

At the start of the handler, we insert a PUSH AF instruction to save the
current content of register A and of the flags. Our program doesn’t change
the content of other registers so we don’t need to save anything else.

HINT: PUSH AF ; save A and the Flags

LD A,(ENABLED)

BIT 0,A ; if the pulse generation is not enabled...

JP Z,EXIT ; exit immediately
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Right after, we check bit 0 of the ENABLED variable. If it is at zero, we simply
exit immediately from the handler. If it’s not, the pulse generator is enabled
so we read the TIME variable, decrement it and rewrite it in the memory.
TIME is therefore decremented by one each time the handler is executed,
every 0.1 mS. After 50 decrements, 5 mS will have passed so we can go on.

LD A,(TIME) ; count the interrupt calls

DEC A

LD (TIME),A

JP NZ,EXIT ; exit if a second has not elapsed

So when we get to zero, we stop the pulse by zeroing the PULSEP port. We
also zero the ENABLED variable, so that we can simply exit the next time
the handler is executed.

LD A,00000000b ; one second elapsed, zero

OUT (PULSEP),A ; the output and the variable ENABLED

LD (ENABLED),A

Finally, before executing the EI and RET instructions, we restore the A con-
tent and the Flags.

EXIT: POP AF ; restore A and the Flags

EI ; re-enable interrupts

RET ; return to the interrupted program

4.7.2 Finite State Machines

The specifications of this example are the same as that in Section 3.5.4 but
are printed here again for ease of consultation. In this case, however, we need
a solution based on the use of interrupts since we assume the processor is
continually working on executing other unspecified tasks in the main loop.

We want to emulate the function of the syn-
chronous sequential component that has the
connections shown in the figure at the left.

Outputs W1 and W0 can assume binary val-
ues from ‘00’ to ‘11’. The component is de-
scribed in Finite State Machine terms (FSM)
in the ASM (Algorithmic State Machine)
chart on the right.

At each rising edge of the clock CK, the
component increments or decrements number
W1W0 based on the value of UP.

We are asked to write a program that creates
the synchronous FSM described.

Use a timer that simulates the active edge of the clock by interrupting the
processor at regular intervals of 0.4 mS.
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The first solution

In the following schematic, we have connected UP to pin 0 of input port IA in
a DMC8 Microcomputer, and outputs W1 and W0 to output port OA. The
unused wires of IA are connected to ‘0’.

The microcomputer is paired with a timer that generates an interrupt request
on Int every 0.4 mS. Since line IntA is connected to the timer’s input CInt,
the processor’s activation of IntA deactivates the timer’s request. The timer
emulates a clock with a period of 0.4 mS (2500Hz ).

In this first solution, rather than reproducing the description of the states
given by the ASM chart, we re-interpret the FSM in terms of a non-cyclical
bidirectional counter. Based on the value of the input, we ascertain the di-
rection of the count, so we increment or decrement the state code (which we
make coincide with the number generated on outputs W1 and W0), and make
sure we don’t go over the limits of the count.

The algorithm described here is executed by the interrupt handler. However,
in the main program, we have inserted a simple placeholder for a standard
independent task as suggested in the previous examples.

Now, let’s look at the following code. To begin, we have defined the two
input and output ports and declared STATE, a variable used to memorize the
code for the state of the FSM (and thus of the outputs). What follow are the
definitions of the jumps to the start of the program and the interrupt handler.

UPINP EQU 00h ; IA input port (UP input line)

W1W0P EQU 00h ; OA output port (W1,W0 output lines)

STATE EQU 0FC00h ; state of the FSM

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h
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We initialize the Stack Pointer, the STATE variable at state (a) and the port
at the corresponding outputs (W1W0 = ‘00’). Then we enable the interrupts
and enter the main loop, which as mentioned before, calls the PROCESS
subprogram that we imagine is carrying out general tasks.

START: LD SP,0FFFFh ; initialize the Stack Pointer
LD A,00h ; set the FSM state to zero
LD (STATE),A
OUT (W1W0P), A ; set outputs as W1 = ‘0’, W0 = ‘0’
EI ; enable interrupts

MAIN: CALL PROCESS ; execute any task
JP MAIN

PROCESS: NOP ; placeholder for any task
RET

Now, let’s look at the interrupt handler (HINT), which is called by the timer10

every 0.4 mS. First, we save A and the Flags, then we see if input UP is
requesting to send the count up or down.

HINT: PUSH AF ; save A and Flags
IN A,(UPINP) ; read line UP from the port
BIT 0,A ; and check its value
JP Z,GODOWN ; ‘0’ = previous state, ‘1’ = next one

If it continues below, the count has to go up. It checks if the state is already
at the maximum value. If it is, it exits the handler because neither the state
nor the outputs should change. If the state is not at the maximum value, it
increments and saves it in the memory, updates the outputs and then exits.

GOUP: LD A,(STATE) ; read the current state
CP 00000011b ; if W1 = ‘1’, W0 = ‘1’ then do not
JP Z,EXIT ; increment the state and exit
INC A ; otherwise increment it

LD (STATE),A ; save the new state code in memory
OUT (W1W0P),A ; update the corresponding outputs
JP EXIT

To decrement the state, the logic is very similar. Finally, we find the code to
get out of the handler at the EXIT label.

GODOWN: LD A,(STATE) ; read the current state
CP 00h ; if W1 = ‘0’, W0 = ‘0’ then do not
JP Z,EXIT ; decrement the state and exit
DEC A ; otherwise decrement it

LD (STATE),A ; save the new state code in memory
OUT (W1W0P),A ; update the corresponding outputs

EXIT: POP AF ; restore A and Flags
EI ; re-enable interrupts
RET ; return to the interrupted program

10 Formally it is called on the active edge of the clock in a real machine.
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The second solution

The hardware circuit is the same as in the first solution. From a software
perspective, this solution is distinctive because of a very general and reusable
algorithm. It makes this solution reasonably adaptable to other problems that
can be solved in FSM terms. Despite its length and repetitiveness, it is actually
very readable and easy to maintain.

The FSM algorithm is executed only by the interrupt handler, as in the pre-
vious case. We also use the STATE variable, as before, to memorize the FSM
state. What is different is that the writing of the code does not take individual
cases into account (that is, in our example the FSM is in fact a counter), but
is intended to be as general as possible, applicable to any ASM chart.

Let’s look at the code here below. We have the definitions of the ports and of
STATE (identical to those on the first solution). Then we define the constants
‘Code a’, ‘Code b’, ‘Code c’ and ‘Code d’, which in turn define the codes
assigned to states (a), (b), (c) and (d) of the ASM chart, respectively.

UPINP EQU 00h ; IA input port (UP input line)

W1W0P EQU 00h ; OA output port (W1,W0 output lines)

STATE EQU 0FC00h ; FSM state variable

Code a EQU 00000000b ; state (a)

Code b EQU 00000001b ; state (b)

Code c EQU 00000010b ; state (c)

Code d EQU 00000011b ; state (d)

The code was chosen so that outputs W1 and W0 correspond to bits 1 and 0
of the code itself. Therefore it wouldn’t be necessary to define the constants of
the outputs corresponding to the states. However, for the sake of completeness
and generality, we’re including them anyway. Then come constants ‘Out a’,
‘Out b’, ‘Out c’ and ‘Out d’, which correspond to the outputs of states (a),
(b), (c) and (d).

Out a EQU 00000000b ; state (a) outputs: W1 = ‘0’, W0 = ‘0’

Out b EQU 00000001b ; state (b) outputs: W1 = ‘0’, W0 = ‘1’

Out c EQU 00000010b ; state (c) outputs: W1 = ‘1’, W0 = ‘0’

Out d EQU 00000011b ; state (d) outputs: W1 = ‘1’, W0 = ‘1’

Then we have the jumps to the program and the interrupt handler.

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

The program begins by assigning the code of state (a) to the STATE variable
and the corresponding outputs to the port. Then we enter the main loop.



4.7 Examples of programming and interfacing 369

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,Code a

LD (STATE),A ; set the initial state equal to (a)

LD A,Out a

OUT (W1W0P),A ; set the corresponding outputs

EI ; enable interrupts

MAIN: CALL PROCESS ; execute any task

JP MAIN

PROCESS: NOP ; placeholder for any task

RET

As mentioned before, tasks are carried in the main loop but this is not our
focus. Rather, let’s look at HINT, the interrupt handler. After saving the
registers that are used, it acquires the FSM input and moves it to register B.

After that, it takes the current state (STATE) of the FSM and compares it
linearly to the four possible codes. Then it jumps to the label corresponding
to the current state of the FSM.

HINT: PUSH AF ; save A, Flags, B and C

PUSH BC

IN A,(UPINP) ; read the FSM input

LD B,A ; move it to register B

LD A,(STATE) ; read the current state of the FSM

CP Code a ; execute a “linear search”

JP Z,STATE A

CP Code b

JP Z,STATE B

CP Code c

JP Z,STATE C

JP STATE D ; the last one is evaluated by exclusion

The following code is divided into four sections, which are very similar in
terms of structure. The sequences are mnemonically labeled to remind us of
the state they handle. What follows is the code for state (a):

STATE A: BIT 0,B ; check input ‘UP’

JP Z, EXIT ; do not change state if UP = ‘0’

LD A,Code b ; but if UP = ‘1’, go to state (b)

LD (STATE),A

LD A,Out b ; set state (b) outputs: W1 = ‘0’, W0 = ‘1’

OUT (W1W0P),A

JP EXIT

As we can see, the sequence begins by evaluating the UP input (now in bit
0 of register B). Based on its value, the new code of state (b) is assigned (or
not) in STATE (and the outputs W1 and W0).
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Note that when the handler ends, STATE represents the new state assumed
by the FSM. What follows is the code for state (b):

STATE B: BIT 0,B ; check input ‘UP’

JP Z,GO a

LD A,Code c ; if UP = ‘1’, go to state (c)

LD (STATE),A

LD A,Out c ; set state (c) outputs: W1 = ‘1’, W0 = ‘0’

OUT (W1W0P),A

JP EXIT

GO a: LD A,Code a ; if UP = ‘0’, go to state (a)

LD (STATE),A

LD A,Out a ; set state (a) outputs: W1 = ‘0’, W0 = ‘0’

OUT (W1W0P),A

JP EXIT

The code is, in fact, a loyal transcription of the ASM chart and the conditions
that provoke changes of state. As we can see in the code, we can go to state (c)
or state (a) depending on the value of UP. Note that changes of state consist
in assigning a new code to STATE and then exiting the handler. The state’s
new code is considered only when we enter the handler again.

Below is the code that handles state (c), which is very similar to state (b):

STATE C: BIT 0,B ; check input ‘UP’

JP Z,GO b

LD A,Code d ; if UP = ‘1’, go to state (d)

LD (STATE),A

LD A,Out d ; set state (d) outputs: W1 = ‘1’, W0 = ‘1’

OUT (W1W0P),A

JP EXIT

GO b: LD A,Code b ; if UP = ‘0’, go to state (b)

LD (STATE),A

LD A,Out b ; set state (b) outputs: W1 = ‘0’, W0 = ‘1’

OUT (W1W0P),A

JP EXIT

The code of state (d), however, is similar to that of (a). In either one, if the
input requests it, the state can remain unchanged.

STATE D: BIT 0,B ; check input ‘UP’

JP NZ,EXIT

LD A,Code c ; if UP = ‘0’, go to state (c):

LD (STATE),A

LD A,Out c ; set state (c) outputs: W1 = ‘1’, W0 = ‘0’

OUT (W1W0P),A

JP EXIT
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The handler ends by re-enabling interrupts, restoring the contents of the reg-
isters and returning to the interrupted program.

EXIT: POP BC

POP AF

EI

RET

4.7.3 Sinusoidal waveform generator

We want to generate a sinusoidal waveform by using an 8-bit virtual digi-
tal/analog converter (DAC) connected to an OF port. The network schematic,
which uses the enhanced version of the “DMC8 Microcomputer”, is shown in
the following figure. The processor’s clock frequency is 10 MHz, and the timer
generates an interrupt every 100µS, through line Int7.

Note that in this case, input CInt is not connected to the microcomputer’s
output IntA but to the output port’s write signal wF. As a result, the interrupt
request generated by the timer is stopped by a new value written on the port.
The write signal wF is also used as a clock for the DAC.

The sinusoidal wave frequency has to be linearly proportionate to the param-
eter Freq, acquired by input port IC. The value of the parameter is limited to
the interval of 0..31 (the value 0 stops the oscillation, generating a constant).

Finally, we calculate the relation between the parameter Freq and the fre-
quency of oscillation. From this we can calculate the highest value that can
be generated.
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Solution

The interrupt handler retrieves the function values from a table of constants
allocated in the ROM. We could, for example, describe a complete sinusoidal
cycle with a table of 256 8-bit values.

Each value would correspond to an advancement of 1/256 of a 360 degree angle
(a round angle), so it would make sense to measure the angle in 256ths of a
round angle. The angle, would thus be between 0 and 255 and conveniently,
this would be nothing other than the table index.

Thanks to the sinusoid’s property of symmetry, we can save memory space by
constructing a table with the 128 values of the positive half wave, while the
negative half wave can be obtained by inverting the sign of the numbers in
the table by a two’s complement operation11.

The values V to insert in the table should be calculated beforehand. The
following expression takes the angle described in 256ths into account:

V (θ) = d127 · sin( θ 360
256 )e 0 ≤ θ ≤ 127

where θ is the angle between 0 and 127, corresponding to the table’s index.
This is defined in the ROM as follows (for brevity’s sake, it is partially shown):

SINTAB: DB 000 ; x = 0 (0 degrees)
DB 003 ; x = 1
DB 006 ; x = 2

... omissis ...
DB 085 ; x = 30
DB 088 ; x = 31
DB 090 ; x = 32 (45 degrees)
DB 092 ; x = 33
DB 094 ; x = 34

... omissis ...
DB 127 ; x = 63
DB 127 ; x = 64 (90 degrees)
DB 127 ; x = 65

... omissis ...
DB 094 ; x = 94
DB 092 ; x = 95
DB 090 ; x = 96 (135 degrees)
DB 088 ; x = 97
DB 085 ; x = 98

... omissis ...
DB 006 ; x = 126
DB 003 ; x = 127
DB 000 ; x = 128 (180 degrees, not used)

11 We could also reduce the size of the table to just 64 values (1/4 wave) but this
would overly complicate the code.
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Now, let’s describe the code of the solution. First we define the input and
output ports then we define a variable ANGLE, which memorizes the last
angle corresponding to the last value generated.

FREQ EQU 02h ; IC input port (Freq)

OUTWAV EQU 05h ; OF output port (Sinusoid)

ANGLE EQU 0FC00h ; current angle

What follows are the jumps to the program and the interrupt handler.

ORG 0000h

JP START

ORG 0038h ; Int. 7

JP HINT7

ORG 0100h

Before entering the main loop, we initialize the Stack Pointer, zero the output
port and the current angle of the sinusoid and then enable interrupts.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h ; zero the waveform output

OUT (OUTWAV),A

LD (ANGLE),A ; zero the current angle

EI ; enable interrupts

The only action the main loop takes is to continually read the frequency
parameter from the FREQ port (if > 31, it is reduced to 31), which is saved
in register B. Note that the parameter is acquired from the main program but
is then used by the interrupt handler. In the following, we will often encounter
this type of communication between programs.

MAIN: IN A,(FREQ) ; read the frequency parameter

CP 32 ; limit its value to 31

JP C, NOLIMIT ; if C = ‘1’ then A < 32 and so skip

LD A,31 ; otherwise limit A to 31

NOLIMIT: LD B,A

JP MAIN

The timer makes sure that every 100µS the interrupt handler HINT7 is exe-
cuted, by first saving register A and the Flags.

HINT7: PUSH AF ; save A and Flags

Every time there is a call, we have to take a new value of the sinusoid from the
table and copy it to the port. The index of the table is calculated by adding
the Freq parameter to the previous angle (remember that Freq is continually
updated in register B by the main program).

LD A,(ANGLE) ; compute the new angle

ADD A,B ; by adding the Freq parameter

LD (ANGLE),A ; to the previous angle
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The angle is passed to the subprogram WAVEFORM, which we delegate to
read the value table and return the corresponding function value to us in
register A. This value is copied to the output port where the Deeds virtual
DAC allows us to visualize the waveform that is generated.

CALL WAVEFORM ; get the next wave value from the table

OUT (OUTWAV),A ; copy it to the output port (to the DAC)

As described in the specifications, writing the port has the effect of erasing
the interrupt request in the timer. This happens because the wF signal of the
port itself is connected to input CInt of the timer.

As always, the handler ends by restoring the saved registers, re-enabling the
interrupts and returning to the interrupted program.

POP AF ; restore A and Flags

EI

RET

As mentioned before, the WAVEFORM subprogram provides the value of the
sinusoid in function of the angle we send it in the accumulator.

This subprogram has to manage 256 values, the first half of which are positive
and read directly from the table of 128 locations. The second half are negative
and derived by calculating two’s complement of the values in the table.

This is why we save the registers used then save the value of the angle in
register C. A little further on, this makes its most significant bit available so
that we can distinguish the first 128 values of the positive half wave from the
128 values of the negative side.

Then, the most significant bit is zeroed in register A so that we can translate
the value of the requested angle in the table’s index (which has 128 locations).
This way, we also map the negative half wave on the positive one in the table.

WAVEFORM: PUSH HL ; save register HL and BC

PUSH BC

LD C,A ; save bit 7 of the angle in C, and mask

AND 01111111B ; it to avoid readings outside the table

The following instructions translate the table’s index into the address of the
location of interest then load the value we need in the accumulator.

LD HL,SINTAB ; get the base address of the table

ADD A,L ; add the index to it

LD L,A ; to obtain the address of the location

JP NC,NoCarry ; of interest in register HL

INC H

NoCarry: LD A,(HL) ; get the value
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Now, we have the value read from the table in A, but we must assess whether
the angle requested referred to the positive half wave or the negative one.

If bit 7, which was first saved in C, was 0, then the returned value must be
positive, otherwise we need to invert the sign (with a NEG instruction). The
function ends by restoring the previously saved registers12.

BIT 7,C ; check if we are in second half wave

JP Z,Positive ; if not, the value is positive

Negative: NEG ; otherwise invert the sign of the value

Positive: POP BC ; restore registers BC and HL

POP HL

RET

Communication between the main program and the interrupt handler

As noted previously, this example shows a parameter (Freq) that is produced
in the main program (reading a port) but used by the interrupt handler.

This is the first example of communication between programs. How reliable
is passing parameters between two totally “asynchronous” processes since the
interrupt can come at any moment with respect to the main loop?

We don’t know beforehand when the interrupt will happen in the loop. For
ease of reading, the loop code is shown again below.

MAIN: IN A,(FREQ)

CP 32

JP C, NOLIMIT

LD A,31

NOLIMIT: LD B,A ; ← the instruction is this

JP MAIN

We always have to go through the instruction that updates register B (marked
by the arrow in the listing) regardless of the value read and the underlying
calculations. We must concentrate on this instruction since the handler expects
to find what it needs in register B.

Luckily, this updating operation is “atomic” (as we’ve seen, this means indi-
visible), so all that can happen is that the register will already be updated at
the time of the interrupt or it will be immediately afterward.

There can be no partial update of its content; the register cannot assume
incongruous values. Simply put, the interrupt handler reads either the old or
the new value, never an incongruous value.

12 Arguably, the pair of PUSH HL and POP HL instructions is not useful because
registers H and L are not used by the main program. Nevertheless, we preferred
to insert them to comply with the general rule that the interrupt program must
preserve the contents of the registers in the processor.
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The frequency of the generated sinusoid

Let’s set the Freq parameter at 1. Each time the handler is called, the value
right next to the previous one is retrieved from the table. This is to say that
all 256 values that describe the entire sinusoid cycle are read one after the
other.

Therefore, the sinusoid cycle is repeated after 256 calls to the handler, which
all happen at a distance of 100µS from each other (thanks to the timer). So,
independently of the processor’s clock frequency, the generated waveform’s
period T and frequency F are:

T = 100µS · 256 and F = 1
100µS·256

Defining:
F0 = 1

100µS = 10 KHz

If Freq = 1, the generated frequency is:

F = F0
1

256 ≈ 39.1 Hz

If Freq = N (> 1), each time the handler is called, the value at N positions
after the previous one is retrieved from the table. In other words, the values are
read by jumping N positions. This means that the table is read at a “speed”
N times faster.

For example if N = 4, one out of every four values is read from the table, thus
taking 1/4 the time to generate the whole cycle (the frequency is quadrupled).
The relation deriving from this is the following13:

T = 256
N · 100µS and F = N · (F0

1
256 )

Given that the specifications require that the highest value of Freq is 31, the
highest frequency generated is:

F = 31 · (10 KHz 1
256 ) ≈ 1.21 KHz

4.7.4 Dual sinusoidal waveform generator

We must design a two-channel (Right, Left) sinusoidal waveform generator
using two 8-bit virtual DACs based on the solution to the previous exercise
(see the following figure).

Connected to port OH, we have the second converter and also a second timer
(Timer L), which is programmed to interrupt the processor every 130 µS. The
first timer (renamed Timer R) is still programmed at 100 µS.

Another frequency controller has also been added so now FreqL (read on port
IC) controls the left channel while FreqR (read on port IA), controls the right
channel.

13 We can verify that this relation stands even when N is not a power of 2.
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Channels Right and Left are updated independently from each other, each
in relation to its own timer: Timer R and Timer L, respectively. Note that
since the timers are set at different times, the two sinewaves have different
frequencies if the FreqR and FreqL parameters remain the same.

Solution

The solution here is very similar to that of the previous example, so many of
the same comments will not be repeated. The first part of the code has the
definitions of the two input and two output ports, which are different between
the left and right channels. Similarly, we use two different variables depending
on the channel to store the last angle used to generate the value.

FREQR EQU 00h ; IA input port (Right Frequency)
FREQL EQU 02h ; IC input port (Left Frequency)
OUTWAVR EQU 05h ; OF output port (Right Channel)
OUTWAVL EQU 07h ; OH output port (Left Channel)

ANGLER EQU 0FC00h ; current angle (Right)
ANGLEL EQU 0FC01h ; current angle (Left)

Notice the addition of the second interrupt handler, HInt6, for the left channel,
while HInt7 will now manage the right channel.

ORG 0000h
JP START
ORG 0030h ; Int. 6 (Left Channel)
JP HINT6
ORG 0038h ; Int. 7 (Right Channel)
JP HINT7
ORG 0100h
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There are no substantial changes regarding the initialization sequence except
the higher number of ports and variables.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h ; zero the waveform outputs

OUT (OUTWAVR),A

OUT (OUTWAVL),A

LD (ANGLER),A ; and the corresponding angles

LD (ANGLEL),A

EI ; enable interrupts

Now, the main program reads the other input port as well. The codes for the
two channels are practically identical apart from the difference in the desti-
nation of the frequency parameter (saved in register B for the right channel
and in D for the left).

MAIN: IN A,(FREQR) ; read the Right frequency parameter

CP 32 ; and limit its value to 32

JP C, NOLIMR ; if C = ‘1’ then A < 32 and so skip

LD A,31 ; otherwise limit a to 31

NOLIMR: LD B,A ; save it in B (used by the Right channel)

IN A,(FREQL) ; do the same thing for the Left channel

CP 32

JP C, NOLIML

LD A,31

NOLIML: LD D,A ; save the parameter in D (Left channel)

JP MAIN

Every 100µS the right channel’s interrupt handler is executed. The code is
identical to that of the previous example except for the different names of the
variables and output port.

Remember that the parameter contained in register B is added to the angle
and then the WAVEFORM function is called. Depending on the new angle,
the function returns the corresponding value of the waveform.

HINT7: PUSH AF ; save A and Flags

LD A,(ANGLER) ; update the current angle (Right),

ADD A,B ; adding the control parameter to it

LD (ANGLER),A

CALL WAVEFORM ; get the waveform sample from the table

OUT (OUTWAVR),A ; and send it to the output port (Right)

POP AF ; restore A and Flags

EI

RET

Every 130µS the left channel’s interrupt handler is launched. Note that it is
identical to that of the other channel except for the different names of the
variable, output port and the increment of the angle of the value in D.
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HINT6: PUSH AF ; save A and Flags

LD A,(ANGLEL) ; update the current angle (Left),

ADD A,D ; adding the control parameter to it

LD (ANGLEL),A

CALL WAVEFORM ; get the waveform sample from the table

OUT (OUTWAVL),A ; and send it to the output port (Left)

POP AF ; restore A and Flags

EI

RET

The WAVEFORM function and the SINTAB table are identical to those of
the previous example, so we will not repeat them here.

However, it makes sense to discuss the importance of the two interrupt han-
dlers working independently, as if each were the only one present. They are
launched by two different interrupt requests from two timers with different
periods.

The only time these two “meet” is when the two interrupt requests periodically
overlap. The priority dynamic solves this problem, however. Simply put, the
left channel is slightly penalized by a small delay in the generation of a value.
It is updated after the right channel request is satisfied.

4.7.5 Object counters

In the system represented below, input port IA is used to acquire the output of
an (idealized) proximity sensor on bit 7. The sensor is inserted into an object
handling apparatus (in an industrial plant), and generates ‘1’ each time an
object passes near the sensor.
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Output ports OC and OD drive a 16-LED array divided into two 8-bit groups
(the high part is LEDH and the low part, LEDL). The lights are arranged
horizontally on a panel visible to the user and they show a 16-bit binary
number. The timer is set to activate the interrupt request line every 500mS.

The program cyclically checks the sensor and counts the objects that have
passed. Every 10 seconds, it updates the number of objects counted on the
LED lights then restarts the count from zero. To call the user’s attention,
each time the number is updated on the LED lights, the lights are turned off
for one second and then turned on again, showing the new number.

Let’s assume there is a maximum of 50 objects per second that can pass in
front of the sensor.

Solution

The last specification requires the system to assess well-defined time intervals
during which it still needs to count objects. This need to double-task suggests
it would be a good idea to use timer interrupts. In fact, using delay loops to
assess the times given by the specifications is inconvenient. The resulting code
would be very complex since the objects need to be counted in addition to
the other tasks.

So let’s divide the tasks between the main program and the interrupt handler.
The main program will count the objects, while the interrupt handler will show
the count to the user every 10 seconds.

Each time an object passes on front of the sensor, the main program incre-
ments the count. The object coming close activates the output of the sensor
at ‘1’. To increment the count, we can wait for the object to move away and
the sensor output go back to ‘0’. In other words, the main program should
wait and count the falling edges on line 7 of the SENS port.

Let’s look at the following code. After defining the addresses of the ports
described in the text, we insert the definition of the two variables.

The first one, (COUNT), counts objects. We dedicate two bytes to that activ-
ity. The text says that the number of objects per second is 50, maximum. It
follows that every 10 seconds, we can count up to 500 objects. This requires
us to use a 16-bit variable.

SENS EQU 00h ; IA input port (sensor)

LEDH EQU 02h ; OC output port (LED15..LED8)

LEDL EQU 03h ; OD output port (LED7..LED0)

COUNT EQU 0FC00h ; object counter (16-bit)

TIME EQU 0FC02h ; time counter
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The second one, (TIME), measures time by counting the timer’s calls to the
handler. To measure 10 seconds, we need to count 20 calls since the timer is
set at a cycle of 500mS.

After the usual jumps to the start of the program and the interrupt handler,
the program does a series of initializations.

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

After initializing the Stack Pointer, we zero output ports LEDH and LEDL,
so that we can start with all the lights off (the text of the exercise does not
specify this but it is reasonable to do it this way).

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h ; zero the output ports

OUT (LEDL),A

OUT (LEDH),A

As we have seen, the TIME variable allows us to count by 20. Let’s count
backward; we need to initialize it at 20. The COUNT variable, however, must
be zeroed since we use it to count objects.

LD A,20

LD (TIME),A ; initialize the time counter

LD HL,0000h

LD (COUNT),HL ; initialize the object counter

At the start of the main loop (MAIN), we enable EI (we’ll soon see why it
is inserted here). Then we find two consecutive wait loops that assess objects
moving in front of the sensor. The first loop waits for the sensor to produce
a ‘1’, which signals an object is present. The second waits for a ‘0’, meaning
the object has moved away.

MAIN: EI ; enable interrupts

WAITH: IN A,(SENS) ; loop to check if...

BIT 7,A ; the sensor output goes high

JP Z,WAITH

WAITL: IN A,(SENS) ; loop to check if...

BIT 7,A ; the sensor output goes low

JP NZ,WAITL

Note that the double wait loop, the wait for the falling edge of SENS, cannot
be substituted by a simple value check. The object, in fact, stays close to the
sensor for a longer time than the processor takes to execute the main loop.
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So if there were just a value check on the SENS output, this would probably
detect the same object... thousands of times.

As soon as the object has moved away, we increment the count variable by
one unit before repeating the main loop as of MAIN.

To guarantee that the updating sequence of the variable isn’t interrupted,
the interrupt disable instruction DI is placed before it. The need to prevent
the sequence from being interrupted will be explained a bit further on in a
description of the interrupt handler.

DI

LD HL,(COUNT) ; increment the object count

INC HL

LD (COUNT),HL

JP MAIN

The interrupts are then re-enabled right afterward by the EI instruction, which
we found at the start of the main loop.

Note that if any interrupt request is made during the time when the interrupts
are disabled, it is not lost. Rather, it is “pending” and will be satisfied soon
after, when they are re-enabled.

The interrupt handler is totally dedicated to showing the count. It is executed
every 500 mS and each time, it decrements the TIME variable.

HINT: PUSH AF ; save the registers in use

PUSH HL

LD A,(TIME) ; decrement the time count

DEC A

LD (TIME),A

When we get to the 20th interrupt, 10 seconds will have gone by and we
jump to DISPLAY. However, when one second after the time is up, the count
will have gone down to 2 so we’ll jump to SWOFF, to turn the lights off (as
required in the specifications). If we are in neither of these conditions, we go
to EXIT, and return straight to the interrupted program.

JP Z,DISPLAY ; jump if 10 seconds are gone by

CP 2 ; are we at one second before time ends?

JP Z,SWOFF ; jump if yes

EXIT: POP HL ; restore the registers saved before

POP AF

EI

RET

We have seen that we jump to the DISPLAY label if 10 seconds have gone
by. It is now the time to show the count by reading the COUNT variable and
copying it to the output port (the high part on LEDH, the low on LEDL).



4.7 Examples of programming and interfacing 383

After it is shown, the count of the objects must be zeroed. Also, before jumping
to the handler output, we re-initialize the time count as well.

DISPLAY: LD HL,(COUNT) ; read the current object count

LD A,H ; display it on the LED array

OUT (LEDH),A

LD A,L

OUT (LEDL),A

LD HL,0000h

LD (COUNT),HL ; re-initialize the object counter

LD A,20

LD (TIME),A ; and the timer counter

JP EXIT

Finally, we have seen that one second before the end of the 10-second period, a
jump is executed to the SWOFF label where the two output ports are zeroed,
the LED lights are turned off and we exit the handler.

SWOFF: LD A,00h ; switch off the LED array

OUT (LEDL),A

OUT (LEDH),A

JP EXIT

One final observation: this is another example of communication between
the main program and the interrupt handler, obtained through the COUNT
variable. Every 10 seconds, the COUNT variable is incremented in the main
loop while the handler is zeroed.

We have seen that the group of instructions related to the increment has been
made non-interruptable. If it were not, the content of the COUNT variable
could be corrupted because an interrupt could come at any time, even in the
middle of the increment sequence.

Let’s look at an example to demonstrate this. Let’s assume we have received an
interrupt request while we are executing the first instruction in the sequence.

LD HL,(COUNT)

First, the instruction is completed. Let’s assume that COUNT contains the
number 175 (just as an example); now this number is in register HL.

At this point, the interrupt handler is executed. Let’s assume that the required
10 seconds have gone by so the COUNT variable is seen on the LED lights
and then zeroed immediately after. When the handler’s work is done, we go
back to the interrupted program and execute the following instructions:

INC HL

LD (COUNT),HL ; → ERROR!

The error is that the content of COUNT has been corrupted. The number
175, which was in HL, is now incremented and copied in the variable, which
has actually just been zeroed.
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4.7.6 Sensor evaluation in parallel

Let’s work with the system in the figure below, which is based on a DMC8
Microcomputer. Port IA is connected to the outputs of three proximity sensors
(SA, SB and SC), which are positioned on three outputs of a machine that
makes metal washers. The sensors generate a high level when a washer comes
near them.

Output ports OA and OB drive 16 LED lights that show the binary number
N15..N0 (divided into the high part NUMH and the low part NUML).

A Timer activates interrupt request Int every 10mS. When the request is
accepted through output IntA, this automatically deactivates line Int.

We need to write a program in assembly language that meets the specifications
below.

The main program executes the required initializations after system reset,
then enters an infinite loop where it continually updates number N15..N0 on
outputs NUMH and NUML. It does so by copying the number from a 16-bit
variable called NUMBER. However, it is the interrupt handler that updates
NUMBER.

The interrupt program identifies the rising edges of sensors SA, SB and SC’s
signals in order to get an overall count of the washers produced every 20
seconds. The count comes in one single 16-bit variable called COUNT. Let’s
assume that no more than 35 washers come before each sensor per second.

Every 20 seconds, the count in COUNT is copied in the NUMBER variable,
making it available to the main program. Then the variable COUNT is re-
initialized at zero.

To let the operator know that the number is about to be updated, all 16 LED
lights must be off for one second before the new value is shown.
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Solution

First we define the input (SENS) and output (NUMH and NUML) port ad-
dresses, then we define the NUMBER and COUNT variables. As described in
the text, we must assure that two bytes are allocated for each variable since
they both need to be 16 bits.

The 8-bit TIME1 and TIME20 variables are used to count time. As we will
see further on, the time will be counted so that we can assess one second and
20 seconds.

The PREV variable stores the previous state of the sensors so that they can
be compared with the current ones every time the interrupt handler is called.
Finally, we have the jumps to the start of the program and the interrupt
handler.

SENS EQU 00h ; IA input port (sensors A, B, C)

NUMH EQU 01h ; OA output port (number, 15..8)

NUML EQU 02h ; OB output port (number, 7..0)

NUMBER EQU 0FC00h ; the number to copy to the LEDs (16-bit)

COUNT EQU 0FC02h ; object counter (16-bit)

TIME1 EQU 0FC04h ; one second time counter

TIME20 EQU 0FC05h ; 20 seconds time counter

PREV EQU 0FC06h ; previous sensor state

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

As always, at the start of the main program, we initialize the Stack Pointer,
the variables in play and the output ports. We insert ‘1s’ in the PREV variable
to prevent the rising edges from being misidentified the first time the sensors
are assessed (further on, we will see the description for the algorithm that
identifies the edges).

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,11111111b ; initialize the previous state

LD (PREV),A

The timer interrupts the processor every 10mS, so to make one second go by,
we need to count to 100, that value we initialize TIME1 with. To assess the
required 20-second interval, however, we simply need to count the seconds in
TIME20 that have already passed in the TIME1 count.

LD A,100 ; initialize the time counters:

LD (TIME1),A ; one second (100 x 10 mS)

LD A,20

LD (TIME20),A ; 20 seconds (20 x 100 x 10 mS)
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The two 16-bit variables, COUNT and NUMBER, are initialized at zero. Also,
before entering the main loop, we enable interrupts.

LD HL,0000h ; initialize the object counter

LD (COUNT),HL

LD (NUMBER),HL ; and the number to display

EI ; enable interrupts

As required by the specifications, the main loop expects the interrupt handler
to update the NUMBER variable that is copied to the 16-bit HL register.
The high part H is then written to the NUMH port and the low part to the
NUML port. At the start, NUMBER is clearly still zero because the interrupt
handler hasn’t been called yet.

MAIN: LD HL,(NUMBER) ; read the number to display

LD A,H ; copy it to the output ports,

OUT (NUMH), A ; separated into the high...

LD A,L

OUT (NUML), A ; and low byte

JP MAIN

The interrupt handler HINT is called every 10mS. When we enter, we save
the registers involved in the processing (A, F, B, C and HL).

HINT: PUSH AF ; save the registers in use

PUSH BC

PUSH HL

We need to find out whether there has been a rising edge at the output of the
three sensors. We do this through a logic function that does a parallel test of
all the sensors and shows us when the rising edges get to their lines (including
the simultaneous ones). Look at the following figure which shows the trend of
a standard signal on a line L.

If we periodically execute a check on L, we will always have a current value
‘C’ and a previous value ‘P’. The table below describes the four possible cases.

Case P C Description Transition F = P · C
1 0 0 Constant value (‘0’ → ‘0’) 0

2 0 1 Positive edge (‘0’ → ‘1’) 1

3 1 1 Constant value (‘1’ → ‘1’) 0

4 1 0 Negative edge (‘1’ → ‘0’) 0

Our focus is on case 2. There is a rising edge on the line if ‘P = 0’ and ‘C =
1’, that is if the Boolean expression F = P · C gives ‘1’.
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To check the rising edges on all three sensors at the same time, we calculate
this function for all the bits in register A simultaneously by reading the lines’
current values on the SENS port and the previous values in the PREV variable.

F = PREV · SENS

The considerations above give rise to the following code. Initially, we read the
state of the port of the sensors and copy it temporarily to B.

IN A,(SENS) ; read the sensors (in parallel)

LD B,A ; save their state in B

Then we copy the previous state (PREV) to the accumulator and we negate
all its bits by executing a CPL instruction. The next AND instruction with
B completes the above function, executed on all the bits in parallel. Then we
save the result of the function in register C.

LD A,(PREV) ; get the previous state and invert all

CPL ; the bits... after the AND, a positive edge

AND B ; results in a ‘1’ on the corresponding bit

LD C,A ; save this evaluation in register C

The value read on the SENS port, which we have moved to B, is then saved
in the PREV variable (it is needed for the check on the next interrupt).

LD A,B ; save the sensors state as “previous”

LD (PREV),A ; for the check on the next interrupt

In bits 7, 6 and 5 of register C we have the result of the function regarding
sensors SC, SB and SA, as shown in the following table (the remaining bits
clearly don’t interest us so we ignore them).

Value SA (bit 7) SB (bit 6) SC (bit 5)

0 - - -

1

We copy the current 16-bit COUNT value to HL. We check bit 7 of register
C (bit 7 corresponds to sensor SA). If it is ‘1’, a rising edge has appeared so
we need to increment the count (now in HL).

LD HL,(COUNT) ; get the current object count

BIT 7,C ; check for a positive edge on sensor SA

JP Z,TEST1

INC HL ; edge detected: increment the count

We repeat the same operation for sensors SB and SC:

TEST1: BIT 6,C ; check for a positive edge on sensor SB

JP Z,TEST2

INC HL ; edge detected: increment the count

TEST2: BIT 5,C ; check for a positive edge on sensor SC

JP Z,ENDTEST

INC HL ; edge detected: increment the count

ENDTEST: LD (COUNT),HL ; update the count in memory



388 4 Interfacing with external devices

When the tests are finished, we update the object count in the COUNT vari-
able. This operation is executed every 10mS. Now we need to assess the time
of one second. So, we decrement the time count in TIME1 and exit the han-
dler if one second hasn’t gone by yet. If it has, at the hundredth call, we go
ahead and re-initialize the count.

LD A,(TIME1) ; decrement the TIME1 variable
DEC A
LD (TIME1),A
JP NZ,EXIT ; exit if not a second has passed

LD A, 100 ; otherwise re-initialize TIME1 = 100
LD (TIME1),A

If the processor has gotten here it means that one second has gone by since
the last time we went through this sequence. Now we need to decrement the
variable TIME20 to see if 20 seconds have gone by.

When its value gets to 1, we will have gotten to one second before the end
of the count so we need to turn the LED lights off by zeroing the NUMBER
variable (remember that the output ports are updated in the main loop).

LD A,(TIME20) ; decrement the TIME20 variable
DEC A
LD (TIME20),A

CP 1 ; check if time is 1 second before the 20th
JP NZ,CHECK0 ; second, jump if not

LD HL, 0 ; otherwise zero the variable NUMBER,
LD (NUMBER),HL ; so all the LEDs will be switched off
JP EXIT

CHECK0: CP 0 ; check if 20 seconds are passed
JP NZ,EXIT ; jump if not

If the count of the seconds gets to zero, it’s the time to re-initialize it but
also to copy the count of the objects from COUNT to NUMBER and zero the
COUNT as per specifications.

DISPLAY: LD A, 20 ; re-initialize the 20 seconds counter
LD (TIME20),A

LD HL,(COUNT) ; copy the object count to NUMBER,
LD (NUMBER),HL ; it will be displayed in the main loop

LD HL,0 ; re-initialize the object count
LD (COUNT),HL

Finally, we restore the contents of the previously saved registers, re-enable the
interrupts, exit the handler and return to the interrupted program.

EXIT: POP HL ; restore the registers saved before
POP BC
POP AF
EI ; re-enable interrupts and
RET ; return to the interrupted program
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4.7.7 Push-button interface for a video game

The system in the following figure is based on a DMC8 Microcomputer compo-
nent and implements an interface for a video game. Input port IB is connected
to eight command buttons (U7..U0) that the user controls14.

Output port OC connects our system to the game console through an asyn-
chronous serial line SER connected on the port’s bit 7. A Timer activates
interrupt request Int every 2mS. The processor accepts the request activat-
ing output IntA. This event, through the CInt line, deactivates line Int.

We need to write a game interface handling program with the following spec-
ifications.

For this project, the main program doesn’t execute operations that are sig-
nificant for our interface except for the required initialization of the variables
and ports at system reset. Right after, the main program enters an infinite
loop where is inactive.

The interrupt handler reads the push-buttons and does a “debouncing” op-
eration on their state. Every time the state of the push-buttons changes, the
information is sent to the game console in serial form on the SER line.

The push-buttons are sampled with a period of 12mS and the debouncing
check consists of verifying that the configuration is identical to the readings
from 12mS and 24mS before. This check prevents the mechanical bounces
of the contacts from misleading the system.

14 For educational purposes, the interface has been simplified and only push-buttons
are present.
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Once the current state of the push-buttons is confirmed by the debouncing
check it is compared to the one confirmed by the previous check. If it has
changed, the new state is prepared to be sent in serial format on line SER.

Bit serialization also has to be timed by the interrupt handler. The asyn-
chronous, serial transmission protocol has a bit time with a duration of 2mS
and a packet made up of a start bit at ‘1’, the 8 data bits (the ‘U7’ button is
transmitted first), and a stop bit at ‘0’ (see the following figure).

Notice that transmitting a (10 bit) packet takes 20mS overall, and that the
push-button checks and data transmission checks don’t need to be mutually
exclusive, but rather done together where necessary.

Solution

In this solution, we define the input and output ports but then insert no
definition of the variables allocated in the memory because we use the registers
to keep the information handled by the program.

This is a very odd choice to make because it engages the registers, an impor-
tant resource for the processor. However, in rare cases such as this, where the
system does no other task, it is feasible.

USER EQU 01h ; IB input port (user push-buttons)

SOUT EQU 02h ; OC output port (serial line SER)

; ‘H’ = ; time count

; ‘B’ = ; push-buttons state (12 mS before)

; ‘C’ = ; push-buttons state (24 mS before)

; ‘D’ = ; push-buttons previous confirmed state

; ‘E’ = ; transmission buffer

What follow are the usual jumps to the program and the interrupt handler.

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

Notice that the declaration of the registers comes in the form of a comment.
While useful for the programmer, it is not essential to the program logic.

The main loop doesn’t carry out tasks after the initializations. These consist
of zeroing the registers used: B, C, D and E, and then assigning the value of
6 to register H, the time counter15.

15 12mS correspond to 6 calls of the interrupt handler (generated by the timer).
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After enabling the interrupts, the processor enters an empty, infinite loop
where it does nothing.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD H,6 ; time: 6 = 12 mS /(2 mS of Timer Tick)

LD B,00h ; zero the other registers in use

LD C,B

LD D,B

LD E,B

EI ; enable interrupts

MAIN: JP MAIN ; empty main loop

The interrupt handler is called every 2mS and in the first couple rows, it
handles the serial transmission of bits (one at a time, every 2mS). Notice the
absence of PUSH instructions. Since the main loop is inactive the registers
are unused, so their content doesn’t need to be saved or retrieved.

HINT: LD A,E ; get data to transmit

AND 10000000b ; mask the bits we don’t care

OUT (SOUT),A ; send bit 7 to the serial line

SLA E ; left shift data (for the next time)

The contents of the serial packet to transmit are defined in the next part of
the code, which we will study a bit further along. While waiting to build the
first packet, register E contains only zeroes.

Therefore, in the beginning, the instructions retrieve a ‘0’ from bit 7 in E
(every 2mS) and send it on line SER. The left shift of register E by the SLA
instruction doesn’t change the situation since it inserts a zero from the right.
At the beginning, in fact, this operation is not useful but the receiver that
reads our SER line will not be disturbed. It will, in fact, continue to read a
constant zero on the line (the “idle state”).

The code prepares the packet, as we shall see, and then saves it in register
E. The lines of code examined here serialize all its bits on line SER, starting
with the bit in position 7. The SLA instruction allows us to left shift the bits
contained in register E. One by one, a new bit will find itself in position 7
every 2mS (where the SER line is connected).

The left shifting also inserts zeroes to the right in the register so after trans-
mitting the whole packet (through 8 shifts), we continue to send only zeroes,
taking us back to the original situation.

Alternatively, we can introduce a variable that signals if we need to transmit
a serial packet or not. However, every time the handler is called this choice
requires us to check whether we have something to transmit and also to count
the number of bits transmitted so we know when to stop sending them. To
make the code simpler and more compact, however, we choose to proceed as
described above.
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After the transmission on the serial line, we have to make sure that 12mS
have gone by before reading the push-buttons. So we decrement register H,
which will be zeroed after 6 calls.

DEC H ; count the time (12 mS)

JP NZ,EXIT ; jump and exit if < 12 mS

LD H,6 ; otherwise re-initialize the time count

If this time has not gone by yet, we jump to EXIT, re-enable the interrupts
(with the EI and RET instructions) and go back to the interrupted program.
Otherwise, at the sixth call, 12mS will have gone by. If so, we re-load 6 in
register H and proceed ahead to handle reading the push-buttons.

Push-buttons and switches are electro-mechanic de-
vices. The figure at the right shows one of the pos-
sible connection techniques. With these circuits, we
are able to transform their manual operation into a
two-level signal readable by a logic device.

The upper part of the figure shows a push-button in
the idle state, that is not pressed (represented with
the electric contacts in the “open” position).

In this state, output PB of the NOT gate is at ‘0’, in that the resistor (or
“pull-up”, in technical jargon) guarantees a high logical level at its input.
When the push-button is pressed the contacts close so we see a ‘1’ at the
output of NOT. When the push-button is released, it goes back to the idle
position (due to a spring). The contact is open again and PB is at ‘0’.

For the switch represented in the lower part of the figure, the circuit is iden-
tical. The difference is mechanical in nature, in the sense that a switch is a
stable, two-position device so the value we set manually is maintained and to
change it, we must press it again.

Pressing a push-button or flipping a switch produces a series of “mechanical
bounces” in the electrical contact due to their mechanical properties. This
causes a non-ideal trend in the signal produced.

For a short time interval,
the signal shows a sud-
den, random fluctuation
in values before reaching
a stable state.

The figure on the right
shows the possible level
changes: ‘0→1’ (above)
and ‘1→0’ (below).

The maximum duration of the bounces is ascertained and declared by the
maker of the devices and is normally on the order of a few mS.
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To overcome this, we should apply a “debouncing technique” in our program.
Let’s adopt the technique of “multiple readings”. We acquire the line multiple
times and we confirm its state only after three consecutive readings over a
reasonable space of time have given the same result.

In the upper part of the figure above, we read the state of the push-button
(‘1’) at time ‘A’. The two previous readings, ‘C’ and ‘B’, which are 12mS
apart, have given the same logical level. The new value (shown in red) is thus
confirmed at time ‘A’.

Now let’s go back to writing the code. We read the input port and get the
current state of all the push-buttons in register A. As defined at the beginning,
we find the state of the push-buttons 12mS before in register B and 24mS
before in register C.

IN A,(USER) ; read the push-buttons state

CP C ; compare it to the 24 mS ago reading

JP NZ,SHIFT ; jump if they differ

CP B ; compare it to the 12 mS ago reading

JP NZ,SHIFT ; jump if they differ

The two CP instructions allow us to discard a reading if it is different from
the previous ones (A 6= B 6= C). This occurs because there has been a change
in the state of the buttons. If this happens, we jump to the SHIFT label,
where the “history” of the previous readings is updated when the content of
B is moved to C and that of A is moved to B.

We move forward only if A = B = C, in which case the state of the push-
buttons is confirmed. The new confirmed value must now be compared to the
previously confirmed one (found in register D) to decide whether to send the
new state of the push-buttons to the serial line. If the new confirmed value is
the same as the previous one, we don’t need to send anything and we jump
to the SHIFT label.

CP D ; compare the state with the previous

JP Z,SHIFT ; confirmed value, jump if they are equal

If the values are different, we transmit the new push-button configuration to
the game console. As we’ve seen, for this to be serialized one bit at a time on
line SER, it needs to be set in register E (the transmission buffer). The new
configuration is also saved in register D where it will serve as the “previous
confirmed value” for the next comparison.

TRASM: LD E,A ; copy the byte to transmit to E and

LD D,A ; to D, as “previous confirmed value”

According to the specifications, the packet must begin with a start bit at ‘1’
and end with a stop bit at ‘0’. However, in register E there are only the eight
data bits of the packet. Before transmitting them we need to send a start bit,
which we can do now.
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It will be kept on the line for 2mS, until it is substituted by the first data bit
through the next call to the handler.

LD A,10000000b ; send the start bit on line SER...

OUT (SOUT),A

JP EXIT ; and exit

The stop bit is guaranteed to arrive because register E gradually empties out
and shifts its contents to the left, while it is filled with zeroes from the right.

Finally, the exit code executes the shift (A → B → C) of the “history” of the
previous push-button readings and then it re-enables the interrupts and goes
back to the interrupted program.

SHIFT: LD C,B ; copy the 12 mS state into 24 mS state

LD B,A ; and the current one into 12 mS state

EXIT: EI ; re-enable interrupts and

RET ; return to the interrupted program

4.7.8 Asynchronous serial communication

The system in the following figures is based on two DMC8 Microcomputer
components. It demonstrates serial communication through two hardware
components: a transmitter and a receiver.

In the serial data transmitter (see the following figure) port OD has a serial-
ization device attached (ASTX, which will be described further on).
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This added component transforms the OD port into a “serial output port”.
This means it allows for a connection to another system through a single wire
(SER) where bits travel one at a time.

We have already met the concept of serial transmission in an example in
Section 4.7.7. There, however, the serialization was handled internally via
software. Here, we use hardware components dedicated to serialization and
de-serialization that guarantee greater efficiency and save the processor’s com-
putational resources.

If we look at the schematic, we see that the ASTX component receives 8 data
bits in parallel from the OD port it’s connected to. While writing to the port,
the synchronization signal wD allows us to start generating a serial sequence
on line SER containing bits D0..D7, which are available at the port.

The serial transmission protocol used in this example is inspired by the main
specifications of the classic standard RS-23216 (see the following figure).

Here, we have defined a bit time of 1.6 µS, which corresponds to 16 clock
cycles of the processor (10 MHz ). So the resulting bit rate is 625 Kb (Kilo
bits) per second. The packet is made up of 10 bits (a start bit at ‘1’, the 8
data bits ‘D0’..‘D7’, and finally a stop bit at ‘0’).

Notice that the bits are transmitted without clock sync information, in the
sense that this doesn’t accompany the signal. As we will soon see, it’s the job
of the receiver to synchronize with the sequence received since it has a clock
that is 16 times higher than the nominal velocity of the bit.

When the transmission is finished the ASTX component activates the RDY
line (ready) to signal that it is ready to acquire a new number to serialize.
To do this, the RDY signal commands interrupt request line Int to assure
the processor’s highest response readiness. If necessary, the processor will
immediately send a new number to the OD port.

Notice that the interrupt request line is conditioned by a logic port connected
to port OA, in order to disable it when we have no need to transfer data.

The following figure shows the receiving part of the system. Port IB has
an added de-serialization component (ASRX, which is described below) that
transforms it into a “serial input port”.

The schematic shows the ASRX component, which can synchronize with the
serially received sequences and extract the 8 data bits from them. The data
bits are returned in parallel to the IB port it is connected to.

16 EIA RS-232 (Electronic Industries Alliance Recommended Standard - 232), or
simply RS-232, defines a type of synchronous serial connection. This is equivalent
to the European standard CCITT V21/V24.
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When the RDY (Ready) line is activated, the component signals that a new
packet has been received. RDY produces an interrupt request through line
Int, so the processor goes to get the received data (by reading port IB). The
request can be disabled through port OA.

We need to write a program that demonstrates the handling of communica-
tion both for the transmitter and for the receiver. Communication must be
made through the interrupt mechanism. For test purposes, the transmitter
continually sends an automatically generated data byte. The receiver receives
the data and and sets them one by one on output port OD (OUT).

For the purposes of writing the code, assume that the main program of the
two systems executes operations that are not significant for the communication
interface, except for the necessary initializations.

Component specifications: the ASTX serial module

The ASTX transmitter block shown in the figure to
the right, has 8 parallel data inputs (D0..D7). A tran-
sition from ‘1’ to ‘0’ at input GO loads the data byte
into the component, which starts the serialization.

The serial packet is produced at the SER output,
following the format described previously.

The bit time is 16 clock periods. The asynchronous clear input CL allows us
to initialize the component. The RDY output is activated (high) when the
component is inactive, that is when it isn’t transmitting and is waiting for a



4.7 Examples of programming and interfacing 397

new data byte to send. The END output, however, is activated at the end of
the transmission, after the stop bit for the duration of one bit time.

The following figure shows the internal schematic of the ASTX component.
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The schematic on the opposite page shows:
— a ‘TX Bit Time Counter’ on the left hand side,
— a 16-bit ‘TX Shift Register’ on the upper right hand side,
— a ‘TX Bit Counter’,
— a ‘TX Controller’ based on the FSM in the center of the figure.

The bit time counter generates a pulse every 16 clock cycles (1.6 µS, the bit
time) on output TC. This line, which is connected to the controller’s input
TCB, is used to time the transmission of individual bits in the packet at the
correct bit rate. The controller’s LDC output allows us to make the counter
start from value ‘1111’ (set up through inputs P3..P0), at the start of a new
transmission.

The shift register serializes the given parallel data byte D0..D7 on the SER
output line. The controller’s lines LDS and ENS govern the register operation.
When the controller activates LDS, the register loads bits D0..D7, the start
bit at ‘1’ and the stop bit at ‘0’ and the 6 unused bits in parallel. When it is
loaded, the start bit appears on line SER.

The next bits in the packet are transmitted one by one every time the register
shifts (ENS is activated by the controller every 16 clock cycles). If LDS and
ENS are not activated, the state of the register remains the same.

The bit counter counts the number of bits to transmit and is initialized at 10
when the controller’s line LDC is activated. The count is decremented by one
each time the controller activates line ENC. When the counter reaches zero,
it activates the controller input TCN just to end the transmission.

The controller’s FSM algorithm is
described in the ASM chart on the
right.

Input GO controls the transmission.
States (a) and (b) wait for its tran-
sition from ‘1’ to ‘0’, while they keep
the two counters initialized by acti-
vating line LDC. In state (b), the
RDY line is activated to signal that
the system is waiting to transmit an-
other data byte.

When the falling edge of GO comes,
we go to state (c) where LDS orders
the TX Shift Register to load data
and ENC orders the TX Bit Counter
to decrement.

In state (d), the FSM waits for the TCB signal from the bit time counter.
Activated every 16 clock cycles, TCB forces the controller to go to state (e)
where ENS orders the register to right shift, while ENC orders the TX Bit
Counter to decrement and counts the remaining bits to transmit.
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When the number of remaining bits reaches zero, the activation of TCN forces
the FSM to exit loop (d)-(e) and move to state (f) where it generates TND
(that drives the output END), to signal the end of the transmission. Finally,
after one more bit time, the FSM returns to state (a).

Component specifications: the ASRX serial receiver

The ASRX receiver block (see the figure on the right)
checks line SER, which waits for the start bit of a
packet. When the start bit comes, the receiver syn-
chronizes with the sequence and then begins acquir-
ing all of its bits one by one until the stop bit comes.
When it finishes receiving the packet, the data bits
are presented in parallel on the 8 outputs D0..D7.

At this point, if the stop bit has been received correctly (at ‘0’), it activates
the RDY line and then waits for the handshaking input GOT to activate.
Input GOT will be activated from the outside to signal that the number has
been acquired so the component can go back to waiting for the next packet
on SER.

The ERR output is activated if the stop bit is at ‘1’ (which can be due to
“noise”, that is to disturbances along the communication line). Also, ERR
is kept active as long as the SER line is at ‘1’ (which could depend on a
malfunction of the line).

The internal schematic of the ASRX module is shown in the following figure.
Some of the elements are similar to those of the transmitter. Note:

— the ‘RX Bit Time Counter’ on the left,
— the 8-bit ‘RX Shift Register’ at the upper right hand side,
— the ‘RX Bit Counter’,
— the ‘RX Controller’ based on the FSM, in the center.

The bit time counter is similar to that of the transmitter and is used for
a similar purpose: to scan the bit time. It is set to count backward and it
activates the controller’s line TCB.

In the transmitter, the goal of the bit time counter is to regulate the bit
generation rate, whereas in the receiver, it synchronizes bit acquisition. The
details on how it works will be discussed further on.

The serial−parallel shift register in the receiver acquires bits on line SER and
returns them in parallel on outputs D0..D7. The register operation is set by
the controller through line ENS. If ENS = ‘0’, the register stays in the previous
state (its content is not modified). When ENS is activated by the controller
(for one clock cycle, positioned at the center of the bit time), the register
acquires the value currently on line SER and right shifts all the previously
memorized values.
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After eight acquisitions, all the bits (D0..D7) will be available in parallel on
the output lines.

The controller initializes the counter of the received bits at 8 through line
LDC. By activating line ENC every time a bit is received, it decrements the
count. When it reaches zero, it activates line TCN. So, the controller stops
receiving data since all the bits will have been received.
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The controller’s algorithm is described in the following ASM chart.

It is important to observe that
the receiver does NOT have ac-
cess to the transmitter’s clock.
Rather it has its own clock gen-
erator, even though its nominal
frequency must be the same (in
our case 10 MHz ).

However, the two frequencies
won’t be precisely equal in the
real world because of the differ-
ent manufacturing tolerances
of the different components.

To solve the synchronization
problem, we have a bit time
that is 16 times the clock pe-
riod. This gives us the chance
to correct the acquisition time
of the packet’s bits at incre-
ments of 1/16 of the bit time.

Therefore we need to execute a synchronization sequence by verifying that
the start bit has arrived in steps of one 16th of the bit time (i.e. one clock
cycle). Also, to maximize the likelihood of all the following bit values being
read correctly (at least for the duration of one packet), it would be smart to
acquire them at the center of the corresponding bit times.

As we see in the ASM chart, to capture the start bit, the FSM reads line SER
in state (a). When SER goes to ‘1’, the FSM moves to (b), where it keeps
monitoring SER, and also line TCB.

If we look at the network schematic, we see that the activation of line LDC
in state (a), has initialized the bit time counter at the value of ‘0110’. This
means that TCB will activate the first time at the center of the start bit time.
Since the counter will continue to count cyclically, the next times that TCB
activates will be every 16 clock cycles, i.e. at the center of the bit time for all
the bits in the packet.

If SER stays at ‘1’ before TCB activates, when TCB arrives, we validate the
start bit and go to state (c). If, however, SER goes to ‘0’ ahead of time, the
FSM goes back to state (a) and waits for a new start bit (this “filter” helps
reduce the chance of interpreting any disturbance on the line as a start bit).

In state (c) we wait for TCB, so we can synchronize with the center of the bit
time. When TCB activates, it goes to state (d), where we activate ENS and
ENC. ENS causes the bit currently on line SER to be acquired, and also all
the other bits in the register to be right shifted.
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ENC, however, decrements the bit counter. Notice that the pair of states (c)
and (d) is repeated 8 times, i.e. for all the data bits, until TCN activates.

The algorithm’s next task is to confirm the stop bit. When TCB activates in
state (c), all the data bits have been received and rather than ordering the
acquisition of the stop bit in the register, the FSM checks its value directly. If
the stop bit is ‘0’, the packet is assumed to be valid so RDY is activated and
the FSM goes to state (e) where it stays until input GOT is activated (by the
processor that reads the Data Port).

If the stop bit is at ‘1’, the data bits received lose their significance and RDY is
not generated. The FSM goes into a waiting state (f), which activates output
ERR and waits17 for SER to go back to ‘0’. Finally, the FSM goes back to
state (a) to wait for a new start bit.

Solution (transmitter assembly code)

First let’s deal with the transmitter code. We define the addresses of output
ports OA (CTRLP) and OD (DATAP), and the DATA variable, used to sim-
ulate the data to be transmitted on line SER. Next, we define the jumps to
the main program and the interrupt handler.

CTRLP EQU 00h ; OA output port (RDY inter. enable)

DATAP EQU 03h ; OD output port (serial TX)

DATA EQU 0FC00h ; simulated data to transmit

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

The main program defines the initial content of the Stack Pointer and the
DATA variable. The ASTX device is initialized at system reset so for now, on
the program start, we don’t need to write in the OD port since that would
cause a packet to be sent on the SER line.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,55h ; initialize variable DATA with a first

LD (DATA),A ; simulated data byte to transmit

LD A,00000001b ; enable interrupt coming from RDY line

OUT (CTRLP),A

Writing ‘1’ to bit 0 of Control Port CTRLP (see the schematic of the transmit-
ter) enables the ASTX component’s interrupt request RDY. Since the ASTX
component is already activating line RDY to signal that it is ready to trans-
mit, the processor will receive an interrupt request immediately.

17 Note that this is the simplest check possible that we can carry out and it doesn’t
pretend to fix all the possible errors.
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This request, however, will only be satisfied after the interrupt mechanism is
enabled by the EI instruction before going into the main loop.

EI ; enable interrupts

MAIN: CALL TASK TX ; simulate a generic task

JP MAIN ; executed in the main loop

In the main loop, we simulate the execution of a generic task by calling sub-
program TASK TX. For the sake of completeness, this subprogram code is
shown below, but it is a simulation of a fictitious task done by the transmit-
ter, independent of data transmission (as explained in previous examples).

TASK TX: LD C,10 ; simulate a generic task

TASK: DEC C ; 4 +

JP NZ,TASK ; 10 = 14 cycles; 14 x 10 = 140 cycles +

RET ; 17 (call) +7 (ld) +10 (ret) = 174 cycles

Aside from saving the registers used, the interrupt handler “creates” a trial
data byte by incrementing the DATA variable.

HINT: PUSH AF ; save A and Flags

LD A,(DATA) ; get DATA variable content

INC A ; create a new trial data byte

LD (DATA),A ; update DATA in memory

The number is then copied to the Data Port and sent to the ASTX component.
At the end of the handler, we restore the contents of the saved registers, re-
enable the interrupts and go back to the interrupted program.

OUT (DATAP),A ; transmit the data byte to the serial port

POP AF ; restore the saved registers

EI

RET

When the number is written on the Data Port, the ASTX serializer:

— riceives the signal GO from line wD on the same port,
— deactivates line RDY and, in so doing, the interrupt request,
— starts transmitting data on SER,
— reactivates RDY when the whole packet is generated.

The interrupted program goes back in execution, only to be interrupted again
as soon as the ASTX serializer stops generating the packet and reactivates
the RDY line.

Solution (receiver assembly code)

At the start of the receiver code, we define the address of the DATAP port
(connected to the ASRX de-serializer), and the CTRLP and OUTP output
ports. Then we define the jumps to the program and the interrupt handler.
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DATAP EQU 01h ; IB input port (serial receiver )

CTRLP EQU 00h ; OA output port (RDY inter. enable)

OUTP EQU 03h ; OD output port (received data output)

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

The program initializes the Stack Pointer and output port OD (OUTP). The
ASRX de-serializer component is initialized by system reset so it doesn’t need
software for this. However, we need to enable the interrupt request from the
RDY line through the CTRLP port.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00000000b

OUT (OUTP),A ; zero the received data output port

LD A,01h ; enable interrupt coming from RDY line

OUT (CTRLP),A

The main loop, akin to that of the transmitter, simulates the execution of a
generic task (subprogram TASK TX).

EI ; enable interrupts

MAIN: CALL TASK RX ; simulate a generic task
JP MAIN ; executed in the main loop

TASK RX: LD C,22 ; simulate a generic task
TASK: DEC C ; 4 +

JP NZ,TASK ; 10 = 14 cycles; 14 x 22 = 308 cycles +
RET ; 17 (call) +7 (ld) +10 (ret) = 342 cycles

The interrupt handler saves and recovers A and the Flags, and also reads the
received data byte from the DATAP Data Port then copies it to port OUTP.

HINT: PUSH AF ; save A and Flags

IN A,(DATAP) ; read the data byte from the receiver

OUT (OUTP),A ; and copy it to the output port

POP AF ; restore the saved registers

EI ; re-enable interrupts

RET ; return to the interrupted program

The code that read the received data is simple. This is because of the tasks
executed in hardware by the ASRX de-serializer. When we read the Data Port
DATAP:

— It receives the GOT signal from line rB from the same port.
— It deactivates the RDY line and so, the interrupt request.
— It goes back to wait for a new packet from SER.
— When it finishes receiving the packet, it reactivates RDY and the processor

is interrupted again so that it goes to retrieve the new received data byte.
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4.8 Exercises

The digital content pages of the book on the Deeds simulator website have
outlines of the schematics, diagrams and/or programs to complete for each
exercise. Those same web pages also have the files for the solutions, so that
students can check their work.

4.8.1 Interrupt techniques

1. Assume we have the system in the figure below, which is based on the
“DMC8 Microcomputer” component.

OC and OD, the two parallel ports, (at addresses 02h and 03h) drive two
groups of 8 LED lights each (OBH and OBL, respectively).

The IA parallel input port (at address 00h) lets us read the outputs of
the two optic sensors (LOWER and UPPER) on bits 7 and 0. The sensors
are positioned at the same point next to a conveyor belt, one on top of
the other. The different heights of the two sensors allow the system to
distinguish between ‘tall’ and ‘short’ objects that move along the belt
(when an object moves in front of a sensor, it generates a ‘1’).

A timer activates the microcomputer’s interrupt request line Int every
5 mS. When the interrupt is accepted, the processor’s response IntA au-
tomatically deactivates line Int.

We need to write a program in assembly language that keeps count of the
number of tall and short objects that move along the conveyor belt.

The system counts the tall items that pass in front of the sensors separately
from the short ones. Every second it updates the number of items on the
LED lights in binary code. Then it restarts the count from zero (OBH =
the number of tall objects, OBL = the number of short objects).
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At most 50 items move along the conveyor belt per second. We must turn
off the LED lights (for about one tenth of a second) before showing the
new number. While the LED lights are off, the system must continue to
count items.

2. Assume we have the system in the figure below, which is based on the
“DMC8 Microcomputer” component.

The parallel port of input IA (at address 00h) lets us read the outputs
of the two proximity sensors (BEGIN and END) on bits 1 and 0. The
sensors are positioned at the beginning and the end of a conveyor belt in
an industrial plant.

OA and OB, the two output parallel ports, (at addresses 00h and 01h)
drive two groups of 8 LED lights each (CNTA and CNTB, respectively).

A timer activates the microcomputer’s interrupt request line Int every
5 mS. When the interrupt is accepted, the processor’s response IntA au-
tomatically deactivates line Int.

We need to write a program in assembly language that keeps count of
the number of objects that move along the conveyor belt based on the
following specifications.

The main program constantly checks the two sensors. Each time an object
moves in front of a sensor, it generates a ‘1’.

Assume that when a sensor output goes from zero to one, this correctly
indicates that an object is passing on front of it. Only one object can move
before a sensor at a time (the objects are in single file on the conveyor
belt). Obviously, two objects can be on the belt at the same time, one in
front of the BEGIN sensor and another in front of the END sensor.
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The main program counts the objects on the conveyor belt (that have
passed from the BEGIN sensor but haven’t reached the END sensor).
Assume that there can be no more than 200 objects on the conveyor belt
at the same time.

Every second, the system updates the number of items on the conveyor
belt on the CNTA LED lights in binary code through the interrupt han-
dler. At the same time, it shows the difference between the current num-
ber of items and the number shown one second before on the CNTB LED
lights (as a signed integer coded in two’s complement).

3. Assume we have the system in the figure below, which is based on the
“DMC8 Microcomputer” component.

Input port IA acquires two 4-bit binary numbers, LEFT and RIGHT,
connected to lines 7..4 and 3..0, respectively. The four output ports OD,
OC, OB and OA drive two “columns” of 16 LED lights each.

A timer activates the microcomputer’s interrupt request line Int every
1 mS. When the interrupt is accepted, the processor’s response IntA au-
tomatically deactivates line Int.

We need to write a program in assembly language that manages the system
based on the following specifications.

The main program executes the necessary initializations at hardware reset
and then enters an infinite loop where it acquires the numbers LEFT and
RIGHT from the input port.

The data are divided into two variables VLEFT and VRIGHT, which will
then be read by the interrupt handler. Every 5 mS, the interrupt handler
converts the values of the variables VLEFT and VRIGHT to linearly
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represent the values received (see the figure below) on the two “LED light
columns”. Define a value table in the source code like the one below:

TABLE: DB 00000000b, 00000000b ; index 0 → all LED lights off

DB 00000000b, 00000001b

DB 00000000b, 00000011b

DB 00000000b, 00000111b

DB 00000000b, 00001111b

DB 00000000b, 00011111b

DB 00000000b, 00111111b

DB 00000000b, 01111111b

DB 00000000b, 11111111b

DB 00000001b, 11111111b

DB 00000011b, 11111111b

DB 00000111b, 11111111b

DB 00001111b, 11111111b

DB 00011111b, 11111111b

DB 00111111b, 11111111b

DB 01111111b, 11111111b ; index 15 → 15 LED lights on

The first line of the table corresponds to value 0 and turns all the lights
off; the last corresponds to value 15, which turns all 15 lights on (notice
the “diagonal” trend of the bit configuration).

4. The system in the following figure is the management unit for a remote
control based on the “DMC8 Microcomputer” component.
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Input port IA lets us acquire the state of eight push-buttons (P7..P0) at
the disposition of the user. Output port OD connects our system to an in-
frared transmitter (not shown in the figure) through a serial asynchronous
line TX connected to bit 1.

Every 1 mS a Timer activates the microcomputer’s interrupt request line
Int. When the processor accepts the interrupt, IntA automatically deac-
tivates line Int.

We need to write a program in assembly language that manages the remote
control according to the following specifications.

For this project, the main program does not execute important operations
except for the necessary initializations of the system at reset. Next, it
enters an infinite loop where it is inactive, leaving the control of the system
to the interrupt handler.

The interrupt handler reads the push-buttons and does a “debouncing
check” on their state. The push-buttons are checked every 10 mS, and
this consists of making sure the configuration read on the port is identical
to that read 10 mS before.

This first check prevents mechanical bounces in the contacts from caus-
ing errors in reading the push-buttons. The state of the push-buttons is
considered validated when the last two readings of the push-button port
are identical regardless of whether the push-buttons are pressed.

Then, the new configuration is coded on 4 bits: T, C, B and A, based on
the following table :

P7 P6 P5 P4 P3 P2 P1 P0 T C B A

1 - - - - - - - 1 1 1 1

0 1 - - - - - - 1 1 1 0

0 0 1 - - - - - 1 1 0 1

0 0 0 1 - - - - 1 1 0 0

0 0 0 0 1 - - - 1 0 1 1

0 0 0 0 0 1 - - 1 0 1 0

0 0 0 0 0 0 1 - 1 0 0 1

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

As the table shows, the coding works on “priority”. If the user presses
multiple push-buttons by mistake, only the one with the highest number is
recognized. Bits C, B and A represent the code that is transmitted on serial
line TX. When at ‘1’, bit T indicates if that configuration corresponds to
at least one pressed push-button. If none of the push-buttons is pressed
the system sends no code.

The system transmits if at least one push-button is pressed and if the
current code is different from that obtained previously. This is done by
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serializing bits C, B and A on line TX (bit T is only used to identify the
“no push-button pressed” configuration, and is not transmitted).

The asynchronous serial transmission protocol has a bit time of 1 mS, and
the packet is composed of a start bit at ‘1’, bits A, B and C (in order),
and a stop bit at ‘0’ (see the following figure).

Suggestion: an example of software-managed serial transmission was given
in Section 4.7.7.

5. Assume we have the system in the figure below, which is based on the
“DMC8 Microcomputer” component. Input port IA lets us read the state
of a push-button (PBUT) on bit 0. Output port OD shows an 8-bit number
on 8 LED lights.

The system must show the value of a variable (NUMBER) to the outside
through the LED lights connected to the OD port. The user can control
the value of NUMBER through the push-button.

Every 20 mS, a timer activates the microcomputer’s interrupt request line
Int. When the interrupt is accepted, the processor’s response IntA auto-
matically deactivates line Int.

We need to write a program in assembly language that manages the value
of the variable (copied on port OD), based on pressing the button.

The main program performs the necessary initializations and then enters
an infinite loop where it is inactive.



4.8 Exercises 411

The interrupt handler, however, checks the push-button periodically. To
prevent mechanical bounces of the push-buttons from causing misread-
ings, the interrupt handler validates the state of the push-buttons through
two consecutive readings 20 mS apart.

When the push-button is pressed, it generates a high level. By pressing
the push-button for half a second, we increment the variable NUMBER
by one unit. If the button is kept pressed, the increment is repeated every
half second. If the number is at the largest value that can be represented
with 8 bits, the increment is not executed. When the push-button is not
pressed, the variable NUMBER is decremented by one unit every half
second, unless that number has reached zero.

6. The figure represents a system based on the “DMC8 Enhanced Micro-
computer” component. The parallel port of input IA acquires data lines
D3..D0. The four parallel output ports OA, OB, OC and OD drive 4 rows
each with 8 LED lights, which make up the four sides of a square.
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A timer activates the microcomputer’s interrupt request line Int every
40µS. When the processor accepts the interrupt, IntA automatically de-
activates line Int.

The main program executes the necessary initializations at reset (all LED
lights on the OC port on, all the others off), and then enters an infinite
loop where it cyclically acquires a 4-bit number from the input port’s lines
D3..D0. After incrementing the value of a unit, it saves it in the memory
(in the TCYCLE variable).

When the interval lasting TCYCLE * 40µS is over, it makes the eight lit
LED lights rotate counter clockwise by one position. The following figure
shows the first three rotations (1)(2)(3) as of the initial position (0).

The LED lights go back to their initial position after 32 rotations.

7. Assume we have the system in the figure below, which is based on the
“DMC8 Microcomputer” component. Input port IA lets us read the state
of push-button PB on bit 0 (when it is pressed, it gives a low level). The
two parallel output ports, OD and OC show a 12-bit number on the LED
lights (NUMH and NUML).

Every 40 mS a timer activates the microcomputer’s interrupt request line
Int. When the interrupt is accepted, the processor’s response IntA auto-
matically deactivates line Int.
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We need to write a program in assembly language that manages the system
based on the following specifications.

For this project, the main program does not execute important operations
except for the necessary initializations of the system at reset, including
zeroing the number shown on the LED lights NUMH and NUML.

Next, the main program enters an empty, infinite loop and delegates sys-
tem control to the interrupt handler.

Every 40 mS, the interrupt handler reads the state of the push-buttons
(there is no request for a debouncing check, since we assume this has been
solved by the hardware, not shown). The functionality of the push-button
depends on how long the user presses it.

— If the push-button is pressed for less than 200 mS, the number on LED
lights NUMH and NUML is incremented by one when it is released.

— If the button is pressed for more than 200 mS and less than 4 seconds,
the number is incremented by eight when it is released.

— If the button is pressed for at least 4 seconds, the number goes to zero
when it is released.

The number must be limited to the largest number that can be represented
with 12 bits.

Note: for assessing times, an approximation of ±40 mS is acceptable.

8. The figure on the next page shows a sine wave digital generator based on
the “DMC8 Enhanced Microcomputer” component.

Input port IC is connected to a serial ASRX receiver (described in the
example in Section 4.7.8) that allows us to receive a command word from
the SER serial line.

The serial packet is composed of 8 data bits plus the start and stop bits
(see the following figure). The bit time is 1,6 µS, corresponding to 16 of
the processor’s clock cycles (10 MHz ).

Only bits F4..F0 are used to control the generator. They are given by the
ASRX receiver on IC port lines D4..D0.

We need to use a virtual 8-bit DAC connected to port OF to generate a
sinusoidal wave form (see the example in Section 4.7.3). The processor’s
clock frequency is 10 MHz, and the timer generates an interrupt every
100µS, through line Int7. The timer’s input CInt is connected to write
strobe wF of port OF (also used for the DAC’s clock).

The sinusoid wave frequency has to be linearly proportional to the FREQ
parameter acquired by the SER serial line. This parameter’s value comes
directly from the bits of the serial packet (after limiting the received value
to an interval of 0..31). Note that a zero stops oscillation and generates a
constant in the output.
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We need to write a program in assembly language that manages the system
based on the following indications.

The main program executes the necessary initializations at hardware reset
and then enters an infinite loop where it is inactive.

There are two interrupt handlers. One of them generates the sinusoidal
wave form and responds to the interrupts generated by timer (Int7). The
other depends on interrupt Int6, which is generated by the ASRX receiver
when a new packet comes from the serial line.
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4.9 Solutions

4.9.1 Interrupt techniques

1. Based on the system’s specifications, we first see that we only need 8 bits
to count at most 50 items per second. With the timer set at 5 mS, we
should count 200 calls from the interrupt handler to allow one second to
go by, so we also only need 8 bits to measure time.

We define the names of the ports and the TIME variable, used to assess
time, as well as the usual jumps to the program and the interrupt handler.

SENS EQU 00h ; IA input port (sensors)

OBH EQU 02h

OBL EQU 03h

TIME EQU 0FC00h ; time counter

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

Before entering the main loop, we initialize the TIME variable and regis-
ters B and C, which are used to count the low and high objects, respec-
tively. Then we zero the output ports and enable the interrupts.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,200 ; and the time counter

LD (TIME),A

LD B,0 ; zero B and C registers, used to count

LD C,0 ; the low and high objects, respectively

LD A,0

OUT (OBH),A ; on start, all LED lights OFF

OUT (OBL),A

EI ; enable interrupts

In the main loop, the program keeps track of object movement by checking
the low sensor. When it signals that an object is near, we check whether
the high sensor is active too.

MAIN: IN A,(SENS) ; wait for an object movement

BIT 0,A ; by checking the low sensor

JP Z,MAIN

BIT 7,A ; check if the object is high

JP NZ,ISHIGH ; jump if it is

According to the height of the object, we wait for the sensor to signal that
it has left the field of view, then we increment the count.



416 4 Interfacing with external devices

ISLOW: IN A,(SENS) ; check if the low object is passed by
BIT 0,A
JP NZ,ISLOW
INC B ; if yes, increment the low object count
JP MAIN ; and return to wait for the next object

ISHIGH: IN A,(SENS) ; check if the high object is passed by
BIT 7,A
JP NZ,ISHIGH
INC C ; if yes, increment the high object count
JP MAIN ; and return to wait for the next object

The interrupt handling routine deals with visualization. It is launched
every 5 mS, and each time, it decrements the count by 1 (which, as we
know, was initialized at 200).

HINT: PUSH AF ; save A and Flags
LD A,(TIME) ; load the time counter in register A,
DEC A ; decrement it and
LD (TIME),A ; write back the time counter in memory

When the time count reaches 1/10 of a second (TIME = 20), the LED
lights are turned off by a jump to LEDOFF, as per specifications.

CP 20 ; if we are 1/10 second from the end...
JP Z,LEDOFF ; jump and turn LED lights off;
CP 0 ; if time count reached zero...
JP Z,DISPLAY ; jump and display the object count

EXIT: POP AF ; otherwise exit, restore A and Flags
EI ; and re-enable interrupts
RET

LEDOFF: LD A,00 ; turn off the LED lights
OUT (OBH),A
OUT (OBL),A
JP EXIT ; and exit

However, when the count is zeroed, one second has gone by and we jump
to DISPLAY, where the number of high and low objects is shown on their
ports and then zeroed.

DISPLAY: LD A,C ; get the number of high objects...
OUT (OBH),A ; and display it
LD A,B ; get the number of low objects...
OUT (OBL),A ; and display it
LD C,0 ; zero the low and high object count
LD B,0
LD A,200 ; re-initialize the time counter to 200
LD (TIME),A
JP EXIT ; and exit

Finally, the time count is re-initialized and starts again from 200.
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2. We define the I/O ports and four variables. SPREC stores the previous
state of the sensors and is used to identify the signal edges. TIME lets
us assess the time required by the text. COUNT is used to count the
number of objects and is incremented when an object comes onto the
conveyor belt and is decremented when it leaves. PCOUNT records the
object count from the previous interval.

SENS EQU 00h ; IA input port (sensors)

CNTA EQU 00h ; OA and OB output ports (counts)

CNTB EQU 01h

SPREC EQU 0FC00h ; previous state of the sensors

TIME EQU 0FC01h ; time counter

COUNT EQU 0FC02h ; object counter

PCOUNT EQU 0FC03h ; previous object count

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

We initialize the Stack Pointer and then zero the variables of COUNT
and PCOUNT, as well as the two output ports. In SPREC, we insert a
value so as not to identify edges during the first reading of the port. The
timer interrupts the processor every 5 mS, so to make one second go by,
we count by 200 (which we insert in TIME).

We enable interrupts with an EI instruction before entering the main loop.
Here, checks on the rising edges are executed in parallel because they could
come simultaneously on the two sensors. We determine if there is a rising
edge through a logic operation between the current state of the sensors
and the previous one.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A, 00h

LD (COUNT),A

LD (PCOUNT),A

OUT (CNTA), A

OUT (CNTB), A

LD A, 00000011b ; value useful to discard the first reading

LD (SPREC), A

LD A, 200 ; initialize the time counter to 200

LD (TIME),A ; (1 second = 200 x 5 mS)

EI

As explained in Section 4.7.6, if we define the value read previously on
one of the sensors as ‘P’, and the current one as ‘C’, on that line there is
now a rising edge if C = ‘1’ and P = ‘0’, that is if the Boolean function
F = (C · P ) gives us ‘1’.
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In the processor, this function can be calculated on all the bits of the
accumulator simultaneously, so we can detect rising edges on two sensors
at the same time.

MAIN: IN A, (SENS) ; get the current state of sensors

AND 00000011b ; masks the bits that don’t interest us

LD B, A ; save the current sensors state in B

LD A, (SPREC) ; get the previous state

CPL ; negate it and execute a bitwise AND

AND B ; between it and the current state

LD C, A ; copy the result to register C

LD A, B ; save the current as “previous state” to

LD (SPREC), A ; SPREC variable, for the next check

We acquire the current state of the sensors, zero the bits that don’t interest
us and then save the state in register B. In the accumulator, we retrieve
the previous state from SPREC. We use the CPL instruction to invert the
previous state of the sensors as per the Boolean function described above.
The result of the AND is copied to register C, while the current state of
the sensors is saved in SPREC for the next check.

We have the results of the function for both sensors in register C. Let’s
check bit 1. If it is not ‘0’, a rising edge has come to the sensor, so we need
to increment the COUNT of the objects present. The test of bit 0 is similar,
but this bit comes from the sensor placed at the end of the conveyor belt.
If an edge has occurred on it, COUNT must be decremented18. After these
operations, we go back to the MAIN label.

S BEGIN: BIT 1, C ; check the sensor at the beginning

JP Z,S END ; of the conveyor belt

LD A,(COUNT) ; if active increment the count

INC A ; of the objects that have entered

LD (COUNT),A

S END: BIT 0, C ; check the sensor at the end of the belt

JP Z,MAIN ; of the conveyor belt

LD A,(COUNT) ; if active decrement the count

DEC A ; of the objects that have come out

LD (COUNT),A

JP MAIN

18 We can also use two separate variables to count entering and exiting objects. This
would not, however, be a good choice because some complications would arise,
such as the need to subtract the two values at the end of one second and to keep
count of any overflow of the counts. To prevent this, the two values would be
re-initialized when the time was up, while keeping count of the number of objects
on the conveyor belt at that time, and loading the difference between the two
counts in the variable of the objects that entered. In any case, an assumption on
the conveyor belt’s maximum velocity is needed.
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Now, let’s look at the interrupt handler, which is called every 5 mS. We
immediately save all the registers involved (A, Flags, B and C) on the
Stack. We assess if one second has passed by decrementing TIME. If one
second has not gone by, we exit the interrupt handler; if it has, we proceed
by re-initializing the time count.

HINT: PUSH AF ; save the registers involved

PUSH BC

LD A,(TIME) ; assess the time that has passed

DEC A

LD (TIME),A

JP NZ, EXIT ; exit if one second has not gone by

LD A, 200 ; otherwise, it has passed, so

LD (TIME),A ; re-initialize the time counter

One second has gone by and we need to show the results on the LED lights.
We temporarily move the previous count PCOUNT in B. Then we take
the current count and show it on the CNTA lights, as per specifications.
This number is also copied in the PCOUNT variable to be used next time.

LD A,(PCOUNT) ; copy the previous count to register B

LD B,A

LD A,(COUNT) ; display the current count

OUT (CNTA), A ; on port CNTA and also save it

LD (PCOUNT),A ; as previous count for the next time

So we subtract the number of previous objects from the number of current
ones and copy that on the CNTB port, as per specifications.

SUB B ; subtract the previous count from the

OUT (CNTB), A ; current one and display it

The handler finishes by restoring the registers used and returning to the
interrupted program.

EXIT: POP BC ; restore the registers

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program

3. We define the addresses of the input and output ports used in the project.

DATAIN EQU 00h ; IA input port

LED RH EQU 03h ; OD output port

LED RL EQU 02h ; OC output port

LED LH EQU 01h ; OB output port

LED LL EQU 00h ; OA output port
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Then we define the variables VLEFT and VRIGHT put forth in the text,
and we introduce a variable TIME as well, to assess the required 5 mS.
The variables are all 8-bit integers. This is followed by the usual links to
the reset and the interrupt request.

TIME EQU 0FC00h ; time counter

VLEFT EQU 0FC01h ; left channel variable

VRIGHT EQU 0FC02h ; right channel variable

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

After the Stack Pointer, we initialize the TIME variable at 5 to count the
5 mS, since the timer interrupts us every 1 mS. We zero variables VLEFT
and VRIGHT, as well as all the output ports (to turn the lights off). Then
we enable the interrupts and enter the main loop.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,5

LD (TIME),A ; set the time counter at 5

LD A, 00h

LD (VLEFT),A ; zero the left and right variables

LD (VRIGHT),A

OUT (LED LL),A ; and zero all the output ports

OUT (LED LH),A

OUT (LED RL),A

OUT (LED RH),A

EI

The main loop reads the DATAIN port (IA), and saves it in register B. It
masks bits 7 through 4 with an AND instruction, while it copies the value
of data lines 3..0 in RIGHT. It takes what was saved in register B and
right shifts it four positions to save the values in LEFT. Then it repeats
these operations infinitely.

MAIN: IN A,(DATAIN) ; read input port DATAIN

LD B,A

AND 00001111b ; let there the low part only

LD (VRIGHT),A ; save it in the right channel variable

LD A,B ; now process the high part

SRL A ; shift right it 4 times

SRL A

SRL A

SRL A

LD (VLEFT),A ; and save it in the left channel variable

JP MAIN
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Every 1 mS the interrupt handler is executed. We save the registers used,
i.e., A, the flags and HL, on the stack. Right after, we assess the time that
has elapsed. If the TIME variable has gone to zero, 5 mS have gone by
and we proceed. If it has not, then we simply exit.

HINT: PUSH AF ; save A, Flags and HL on the Stack

PUSH HL

LD A,(TIME) ; assess the time that has passed

DEC A

LD (TIME),A

JP NZ,EXIT ; exit if 5 mS have not elapsed

LD A,5 ; otherwise, re-initialize variable TIME

LD (TIME),A ; and goes on

5 mS have gone by and we have re-initialized the time count. Now we
need to update the LED columns consistently with variables VLEFT and
VRIGHT. We delegate to the LINEAR subprogram the task of translating
the value of the variable (passed through register A) to the bit pattern to
write to the LED ports (returned to H and L).

LD A,(VLEFT) ; convert the left channel variable

CALL LINEAR ; in the corresponding LED patterns

LD A,L ; which are returned in L and H registers

OUT (LED LL),A ; and display them on the output ports

LD A,H

OUT (LED LH),A

We call the function twice: the first time, we pass the VLEFT variable in
A, and the second, the VRIGHT variable. Once we’ve got the correspond-
ing patterns of the LED lights in H and L, we update the corresponding
ports.

LD A,(VRIGHT) ; do the same for the right channel

CALL LINEAR

LD A,L

OUT (LED RL),A

LD A,H

OUT (LED RH),A

The exit code restores the contents of the registers saved before, re-enables
the interrupts and goes back to the interrupted program.

EXIT: POP HL ; restore HL, Flags and A from the Stack

POP AF

EI

RET

The LINEAR subprogram uses the table from the text. The address of
the first row in the table (referenced by the label TABLE) is set in HL.
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Every row in the table stores the pattern of 16 lights to turn on or off
according to a certain index passed from the calling program through A.

The SLA instruction multiplies the given index by 2, thus offsetting the
row we are interested in since the table is made up of 2 bytes per row. So
we add this offset to the address in HL.

LINEAR: LD HL,TABLE ; read the table item specified by the

SLA A ; index passed through register A

ADD A,L ; calculate HL = HL + (2 · A)

LD L,A

JP NC,GETHIGH ; take into account the carry, if any

INC H

In HL, we now have the address of the first byte of the row corresponding
to the given index. We use HL to read that byte from the table and copy
it in A. Then we increment HL to point to the second byte that interests
us. After the second access to the table, the address in HL will no longer
be useful so we can reuse L and H for another purpose. Therefore, we copy
the second byte to L.

After transferring A in H, the function returns to the calling program as
the two bytes with the LED patterns are in registers H and L.

GETHIGH: LD A,(HL) ; read the two corresponding patterns

INC HL

GETLOW: LD L,(HL)

LD H,A ; and return them in registers H and L

RET

For easy readability, the table described in the text is shown here.

TABLE: DB 00000000b, 00000000b ; index 0 → all LED lights off

DB 00000000b, 00000001b

DB 00000000b, 00000011b

DB 00000000b, 00000111b

DB 00000000b, 00001111b

DB 00000000b, 00011111b

DB 00000000b, 00111111b

DB 00000000b, 01111111b

DB 00000000b, 11111111b

DB 00000001b, 11111111b

DB 00000011b, 11111111b

DB 00000111b, 11111111b

DB 00001111b, 11111111b

DB 00011111b, 11111111b

DB 00111111b, 11111111b

DB 01111111b, 11111111b ; index 15 → 15 LED lights on
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4. We define the addresses of the input and output ports and the variables
TIME, TXBUFF, PREV and CONV. This is followed by the link to the
reset and the interrupt request.

USER EQU 00h ; IA input port (push-buttons)

TXOUT EQU 03h ; OD output port (serial output TX)

TIME EQU 0FC00h ; time counter

TXBUFF EQU 0FC01h ; transmission buffer

PREV EQU 0FC02h ; the previous state of the input port

PTCBA EQU 0FC03h ; the previous validated code

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

We initialize all the variables and the output port at zero; we set TIME
at 10. We enable the interrupts and enter the main loop which is empty.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,10

LD (TIME),A ; 10 * 1 mS (timer tick) = 10 mS

LD A,0 ; zero the other variables

LD (TXBUFF),A

LD (PREV),A

LD (PTCBA),A

OUT (TXOUT),A ; and the output port

EI

MAIN: JP MAIN

On entering the interrupt handler, we save the registers used and, on
exit, we restore them before returning to the interrupted program. We do
this even though the main loop is empty, in anticipation of any future
modification.

HINT: PUSH AF ; save registers A, Flags, D and E

PUSH DE

The interrupt handler is launched every 1 mS and it executes serial bit
transmission (one every 1 mS ) in the first couple lines. We have defined a
transmission buffer (the TXBUFF variable), which is even used when the
serial line is in the idle state. In the absence of a packet, the buffer contains
zeroes. The value of the line remains idle, and the handler continues to
send zero after zero, right shifting the register.

LD A,(TXBUFF) ; get the transmission buffer

SRL A ; shift right it of one bit position

LD (TXBUFF),A ; and write back it in memory

AND 00000010b ; mask all the bits, except bit 1

OUT (TXOUT),A ; send its value to the output port
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When we have a packet to send, we copy it in TXBUFF so that the handler
right shifts it one position at each call and sends its bits out one by one.
When the packet is done being transmitted, TXBUFF will be totally at
zero again.

Considering the position of the TX serial line on bit 1 of the output port
and the specifications in the text, the packet initially set in the buffer has
this format:

— bit 7 = ‘0’ (idle state of the line)
— bit 6 = ‘0’ (stop bit)
— bits 5, 4 and 3 = C, B and A (data bits, C is transmitted last)
— bit 2 = ‘1’ (start bit)
— bit 1, 0 = ‘0’

For the transmission, we have chosen to shift the buffer before sending a
bit, therefore the packet contains the bits arranged so that the start bit
will be in the position of line TX at the first sending.

We send a bit on the serial line and then assess the time that has elapsed,
decrementing the TIME variable. We move on only if 10 mS have passed,
otherwise we exit the handler.

LD A,(TIME) ; assess the time (10 mS)

DEC A

LD (TIME),A

JP NZ,EXIT ; exit if 10 mS have not elapsed,

LD A,10 ; otherwise re-initialize the time count

LD (TIME),A

10 mS have elapsed, so we need to read the state of the push-buttons after
loading the configuration read 10 mS before (PREV) in register D.

We get rid of the bounces by exiting the handler. We move forward if
the two configurations are equal, thus validating the new configuration.
In any case, we save the current configuration in the PREV variable to
use it in the next 10 mS.

LD A,(PREV) ; copy the previous reading

LD D,A ; to register D

IN A,(USER) ; get the current state of push-buttons

CP D ; and compare it with the previous one

LD (PREV),A ; save the current as previous for next

JP NZ,EXIT ; exit if the current state is different

Then we validate the new value and move on to encode the key pressed in
the four bits T, C, B and A, as described in the text (for easy readability,
the table of the “priority encoder” is shown in the following).

To immediately exclude the possibility expressed in the last row of the
table, we do a preliminary check to see that no key has been pressed.
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P7 P6 P5 P4 P3 P2 P1 P0 T C B A

1 - - - - - - - 1 1 1 1
0 1 - - - - - - 1 1 1 0
0 0 1 - - - - - 1 1 0 1
0 0 0 1 - - - - 1 1 0 0
0 0 0 0 1 - - - 1 0 1 1
0 0 0 0 0 1 - - 1 0 1 0
0 0 0 0 0 0 1 - 1 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

In the case of the last row, we jump to CODED, taking advantage of the
fact that the accumulator is zeroed (with the meaning of TCBA = ‘0000’).

OR A ; check if at least a button is pressed

JP Z,CODED ; avoid encoding if no button is pressed

For priority encoding, we chose the “by calculations” method (we could
also have used the “decision tree” method). To do this, we begin with
the attempt code TCBA = ‘1111’ in the accumulator and check the most
significant bit of the push-buttons (whose state is found in D). If the
push-button is not pressed, we shift the next push-button to position 7,
decrement the TCBA attempt code and repeat the loop.

LD A,00001111b ; code TCBA (and loop counter)

DECODE: RL D ; rotate through Carry flag the buttons

JP C,CODED ; if the flag is set, we have the code in A

DEC A ; otherwise, repeat the loop

JP DECODE ; until the code TCBA is found

The algorithm necessarily converges because we have excluded the situa-
tion where no push-button is pressed. The new, validated TCBA code that
we have in the accumulator, now has to be compared with the previous
one (PTCBA), as per specifications, to determine whether we send a new
packet. Next, we copy the new TCBA code to register E and compare it
with the previously validated one. If they are equal, it does not need to
be transmitted.

CODED: LD E,A ; copy in E the new obtained code

LD A,(PTCBA) ; get the previous validated code in A

CP E ; compare it with the new code

JP Z,EXIT ; exit if they are equal

The specifications also forbid data transmission if no key is pressed. There-
fore, we save the validated code in the PTCBA variable and then make
sure it is not zero. If that is the case, we transmit nothing and exit.

LD A,E ; get the new validated code from E

LD (PTCBA),A ; save it into the PTCBA variable

OR A ; check if at least a button is pressed

JP Z,EXIT ; exit if no button is pressed
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Bits C, B and A are to be transmitted and are found now in the accumula-
tor, but we must eliminate bit T, which is not required in the transmission.
Bits C, B and A also need to be moved to the correct position through
three shifts to format the packet according to the specifications described
above. We add the start bit and load the packet in the TXBUFF trans-
mission buffer.

TXCODE: AND 00000111b ; leave there only CBA bits

SLA A ; shift the code in the correct position

SLA A

SLA A

OR 00000100b ; set the start bit at ‘1’

LD (TXBUFF),A ; and save the packet in the TX buffer

Finally, we restore the registers and go back to the interrupted program.

EXIT: POP DE ; restore registers D, E, A and Flags

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program

5. We define the input and output ports, the variables in play and the jumps
to the beginning of the program and the interrupt handler.

PRECB stores the previous state of the push-button for a debouncing
check, while CONFB records its confirmed state downstream of the check.
NUMBER keeps the value that is incremented/decremented whereas
TIME counts the 500 mS.

The constant MaxTIME is used to initialize the time count.

BUTP EQU 00h ; IA input port (push-button)

NUMP EQU 03h ; OD output port (number display)

PRECB EQU 0FC00h ; used for push-button debouncing

CONFB EQU 0FC01h ; previous-confirmed push-button value

NUMBER EQU 0FC02h ; the number that we handle

TIME EQU 0FC03h ; time counter

MaxTIME EQU 25 ; time constant corresponding to 50 mS

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

We initialize output port NUMP and variables PRECP, CONFB and
NUMBER at zero. TIME is loaded at 25 to assess the half second (20 mS
· 25 = 500 mS ). Then we enable the interrupts and enter the main loop
that does nothing (it is empty).
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START: LD SP,0FFFFH ; initialize the Stack Pointer

LD A,0 ; initialize the following variables

LD (PRECB),A ; and the output port at zero

LD (CONFB),A

LD (NUMBER),A

OUT (NUMP),A

LD A,MaxTIME ; initialize the time counter (500 mS)

LD (TIME),A

EI ; enable interrupts

MAIN: JP MAIN ; empty main loop

The interrupt handler saves and restores registers A, Flags, B and C, even
though the main loop is inactive (to allow for future changes).

HINT: PUSH AF ; save the used registers

PUSH BC

The following sequence of instructions reads the new value of the push-
button and compares it to that stored in PRECB.

If the values are different, a transient or a bounce is in progress so we
immediately discard the value and exit19. If the values are equal, we go
on saving the confirmed value in C.

The current value is copied in PRECB for the comparison that will be
executed during the next call to the handler.

LD A,(PRECB) ; get the previous push-button value

LD B,A ; copy it to register B

IN A,(BUTP) ; read the push-button current value

AND 00000001b ; mask the unused bits and save the new

LD (PRECB),A ; value as ‘previous’ (for the next check)

CP B ; compare values for debouncing

JP NZ,EXIT ; exit if they are different

LD C,A ; otherwise copy the new confirmed

; value to register C

So let’s see if the confirmed value has changed. If it has, we need to reset
the time count so that the next increment (or decrement) happens as of
500 mS after the change. We also save the new state of the push-button
in CONFB for the next check.

LD A,(CONFB) ; get the previous confirmed value

CP C ; compare it to the current value

JP Z,COUNT ; jump if they are equal

19 When we exit the handler this way, the time count is interrupted. There will be
an error of 20mS for every bounce or transient identified. However, since we are
dealing with manually pressing buttons, the user will not notice such a small error
compared to 500mS.
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LD A,MaxTIME ; otherwise, they are different, so

LD (TIME),A ; re-initialize the time count and

LD A,C ; save the new confirmed value as the

LD (CONFB),A ; ‘previous’ confirmed (for the next time)

When the 500 mS are up, we need to change the number in function of
the confirmed value of the push-button. We count the time in the TIME
variable, in terms of the number of calls to the handler, and we exit if
the 500 mS haven’t elapsed yet. Otherwise, it is time to increment or
decrement the variable NUMBER (after re-initializing the time counter).

COUNT: LD A,(TIME) ; assess the time that passes

DEC A

LD (TIME),A

JP NZ, EXIT ; exit if 500 mS have not elapsed,

LD A,MaxTIME ; otherwise re-initialize the time

LD (TIME),A ; counter and go on

When the 500 mS have elapsed, we assess the confirmed value of the push-
button that we had saved in register C. If we have to increment, we jump
to INCR, if not, we move on to DECR.

BIT 0,C ; check the push-button current value

JP NZ,INCR ; jump if it is high

The two sequences are very similar. They start with a compare to the
limit value, coherent with the direction of the count, so the content of
NUMBER and thus that of output port NUMP are updated.

DECR: LD A,(NUMBER) ; decrement the number, but we check

CP 0 ; beforehand if it is possible

JP Z,EXIT

DEC A

LD (NUMBER),A ; write back the new variable value

OUT (NUMP),A ; and write it to the output port

JP EXIT

INCR: LD A,(NUMBER) ; increment the number, but we check

CP 0FFh ; beforehand if it is possible

JP Z,EXIT

INC A

LD (NUMBER),A ; write back the new variable value

OUT (NUMP),A ; and write it to the output port

Finally, we restore the contents of the saved registers, re-enable the inter-
rupts and go back to the interrupted program.

EXIT: POP BC ; restore the contents

POP AF ; of the saved registers

EI ; re-enable interrupts

RET ; return to the interrupted program



4.9 Solutions 429

6. Among the definitions, we find the input port (DATAP) and output port
(LED RT, LED UP, LED LF and LED DN); the TIME variable, used to
count time; the TCYCLE variable, alluded to in the text of the exercise;
and four variables to copy the current state of the LED lights (M RT,
M UP, M LF and M DN). This is followed by the connections to reset
and the interrupt handler.

DATAP EQU 00h ; IA input port (Inputs D3..D0)

LED RT EQU 02h ; OC output port (LEDs, right side)

LED UP EQU 01h ; OB output port (LEDs, upper side)

LED LF EQU 00h ; OA output port (LEDs, left side)

LED DN EQU 03h ; OD output port (LEDs, lower side)

TIME EQU 0FC00h ; time counter

TCYCLE EQU 0FC01h ; duration of the time step

M RT EQU 0FC02h ; software copies of the output ports

M UP EQU 0FC03h

M LF EQU 0FC04h

M DN EQU 0FC05h

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

At reset we jump to START and initialize the Stack Pointer. We have
chosen to set the time counter to 1 so we can immediately execute the
first shift, as we will see further on. Other choices, which are equal from
a functional perspective, would have been good as well. We continue with
the initialization of the ports and the variables which record their values.
They are set based on what is described in the text (all LED lights on the
port LED RT are set on, all others off). Then we enable the interrupts
and enter the main loop.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,1 ; the time counter,

LD (TIME),A

LD A,11111111b ; and the output ports

LD (M RT),A

OUT (LED RT),A

LD A,00000000b

LD (M UP),A

OUT (LED UP),A

LD (M LF),A

OUT (LED LF),A

LD (M DN),A

OUT (LED DN),A

EI
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In the main loop we read lines D3..D0 from the input port and we mask the
bits that are not in use with an AND. To comply with the specifications,
we increment the number read and save this value in TCYCLE. In the
text, TCYCLE is multiplied by 40 µS, but this time enters into play simply
because the timer calls the interrupt handler at regular intervals of 40 µS.

MAIN: IN A,(DATAP) ; read D3..D0 from the input port

AND 00001111b

INC A

LD (TCYCLE),A

JP MAIN

First of all, the interrupt handler saves all the used registers on the Stack
even through the main program doesn’t strictly need them20.

HINT: PUSH AF ; save the used registers

PUSH BC

PUSH DE

Right after, we decrement the time count. If the required time has not
gone by, we jump directly to the exit code. Otherwise, it is time to change
the on/off state of the LED lights.

Before that, however, we need to re-initialize the time counter with the
value set by the main program in TCYCLE (the time count will start
again at the next call to the handler).

LD A,(TIME) ; assess the time

DEC A ; to regulate the rotation speed

LD (TIME),A

JP NZ,EXIT ; exit it time has not elapsed

LD A,(TCYCLE) ; re-initialize the time counter

LD (TIME),A

Then, we calculate the new state of the LED lights by reading it from the
software copy stored in the four variables in memory M RT, M UP, M LF
and M DN.

LD A,(M RT) ; now is the time to rotate the LEDs lit

LD E,A ; copy their current state from memory

LD A,(M UP) ; to registers E, D, C and B

LD D,A

LD A,(M LF)

LD C,A

LD A,(M DN)

LD B,A

20 It is always a good idea to insert the appropriate PUSH and POP, so that if there
are changes to the main program, we do not need to remember to change the
interrupt handler as well.
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The current state, copied into registers B, C, D, E of the CPU, is shown
in the figure below as one single 32-bit register.

We need to do a left rotation of these 32 bits. Since we cannot do this in
one operation, we break it up into four 8-bit shifts that go through the
Carry flag (Cy in the figure).

The first RL A instruction in the sequence takes advantage of the fact
that A still contains the value of the eight farthest left bits of the 32 bit
set (those now in B). It shifts them in order to copy bit 7 in the Carry
flag. The next RL E inserts that bit at the right of bit 0 in E.

RL A ; copy bit 7 of B to the Carry flag

RL E ; and rotate left 32 bits, in four steps:

RL D ; B ← C ← D ← E ← B7

RL C

RL B ; close the 32 bits rotation

So the next RL intructions left shift all the bits one register at a time but
the bit that exits from the left of a register is inserted at the right through
the Carry flag in the register on the left.

When the rotation is complete, we need to update the state of the LED
lights in the memory in their software copies and the output ports.

OUTPUTS: LD A,E ; display the new state on the ports

LD (M RT),A ; and update their software copies

OUT (LED RT),A

LD A,D

LD (M UP),A

OUT (LED UP),A

LD A,C

LD (M LF),A

OUT (LED LF),A

LD A,B

LD (M DN),A

OUT (LED DN),A

Finally, we take back the previous content of the registers, re-enable the
interrupts and go back to the interrupted program.

EXIT: POP DE ; restore the saved registers

POP BC

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program
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7. We define the addresses of the input port (PBUT) and output ports
(NUMH e NUML). The PREV variable stores the previous state of the
push-button. TIME is used to measure how long the push-button is
pressed. NUMBER stores the 12-bit number shown on ports NUMH and
NUML.

PBUT EQU 00h ; IA input port (push-button)

NUMH EQU 03h ; OD output port (NUMH, bit 11..8)

NUML EQU 02h ; OC output port (NUML, bit 7..0)

PREV EQU 0FC00h ; previous state of the push-button

TIME EQU 0FC01h ; how long the push-button is pressed

NUMBER EQU 0FC02h ; current displayed number (2 bytes)

There are also two more definitions: those of constants TIME4000 and
TIME200, the time thresholds required by the text (measured in the 40 mS
increments marked by the timer).

TIME4000 EQU 100 ; 4 S = 100 · 40 mS

TIME200 EQU 5 ; 200 mS = 5 · 40 mS

This is followed by the links to the reset and the interrupt handler.

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

Then we initialize the Stack Pointer, do the first reading of the push-
button port and save that state in the PREV variable.

START: LD SP,0FFFFh ; initialize the Stack Pointer and

IN A,(PBUT) ; the push-button previous state

AND 00000001b

LD (PREV),A

The time counter TIME is zeroed (it will be incremented when the button
is pressed next). We also zero the NUMBER variable and the correspond-
ing output ports, by means of the OUTPUT subprogram. Then we enable
the interrupts and enter the (empty) main loop.

LD A,0 ; initialize the time counter

LD (TIME),A

LD HL,0 ; zero the variable NUMBER

CALL OUTPUT ; and display it on the ports

EI ; enable interrupts

MAIN: JP MAIN ; empty main loop

The OUTPUT subprogram receives the number to save in the NUMBER
variable in HL, copies it on output ports NUMH and NUML, and makes
that visible on the LED lights.
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OUTPUT: LD (NUMBER),HL ; update the variable NUMBER

LD A,H ; and display its contents on the ports

OUT (NUMH), A

LD A,L

OUT (NUML), A

RET

The interrupt handler saves all the used registers in anticipation of any
extensions of the code, even though the main loop doesn’t use them.

HINT: PUSH AF ; save the used registers

PUSH BC

PUSH DE

PUSH HL

The following sequence of instructions acquires the current state of the
push-button from the port and compares it with the state memorized in
PREV, which was moved to C beforehand (AND only masks the bits that
are not of interest).

The current state is copied in B and saved in PREV for the comparison
that will be executed the next time the handler is called.

LD A,(PREV) ; get the previous push-button state

LD C, A ; and copy it to register C

IN A,(PBUT) ; read the current state from the port

AND 00000001b ; mask the bits that are not of interest

LD B,A ; copy the current state in B

LD (PREV),A ; and save it for the next call

Notice that we are not simply looking for the edges of the signal; the
assessment is more complex. The specifications require us to calculate the
amount of time the push-button is pressed, and to act differently once it
is released.

So we check if the button is being pressed. If it is, we check how long it has
been pressed. If it isn’t, we jump to UPTEST, where we check whether
the button has been released now.

BIT 0,B ; is the push-button pressed?

JP NZ,UPTEST ; jump if it is not

To understand the code, however, let’s assume for now that the push-
button is pressed and we move ahead without executing the jump. If the
push-button remains in this state, every time the handler is called, we
pass from here and go on to increment the time count.

If fewer than 4 seconds have gone by, we continue to count, otherwise we
stop. Once 4 seconds have passed, in fact, we are no longer interested in
the exact time value. By stopping the time count we also prevent a possible
overflow. After assessing the time, we exit the handler since nothing more
is required if the button is pressed.
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LD A,(TIME) ; because the button is pressed,

CP TIME4000 ; check if four seconds are elapsed

JP Z,NOINCR ; if so do not increment the time count

INC A ; otherwise, increment it and

LD (TIME),A ; write back it to the memory

NOINCR: JP EXIT ; and exit from the handler

If the push-button is at rest, however, we check its previous state to show
if the button has been released at this moment. If it has been a rest since
before, however, we simply exit. But it has just been released now, so
let’s check how long the button was pressed and act according to the
specifications.

We have copied the previous state of the push-button to register C, so if
the previous state is also high, the button was not released and we jump
straight to the exit code.

UPTEST: BIT 0,C ; check if the button has been released

JP NZ,EXIT ; exit if it is not

Otherwise, the button has been released and we need to act according
to how long it was pressed. So, let’s read the TIME variable, which was
being updated the whole time the button was kept pressed.

If it is at the maximum count, it was pressed for at least 4 seconds so we
jump to CLEAR. If it is not, we check if the time is greater than 200 mS
(between 200 mS and 4 seconds), and if that is the case, we jump to the
MS200 label. Notice that after the second CP instruction, the conditional
jump assesses the Carry flag for the equal-to or greater-than condition.

LD A,(TIME) ; the button has been released,

CP TIME4000 ; so assess the elapsed time...

JP Z,CLEAR ; jump if pressed for at least 4 seconds

CP TIME200 ; check if time is less than 200 mS

JP NC,MS200 ; jump if it is equal or greater

If we continue, then the time has been assessed as lesser than 200 mS by
exclusion, so we need to increment NUMBER by one unit, inserting a 1 in
register D and jumping to the ADDNUM label. Similarly, 8 is loaded in
D at the MS200 label. In fact, a little further on in the code, the sequence
beginning with the ADDNUM label increments the NUMBER variable by
the quantity passed in D.

ONE: LD D,01h ; by exclusion, time is less than 200 mS,

JP ADDNUM ; increment NUMBER by 1

MS200: LD D,8 ; time is between 200 mS and 4 seconds,

JP ADDNUM ; increment NUMBER by 8

CLEAR: LD HL,0 ; otherwise, it is greater than 4 seconds,

JP UPDATE ; zero the NUMBER variable
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Notice that at the CLEAR label we want to zero NUMBER, so we zero
HL and jump directly to UPDATE without passing through ADDNUM.

As we have seen, we enter the ADDNUM label after loading the constant
to add (1 or 8) in register D. The content of NUMBER is copied in HL
and the D content is added to it. Any carry toward the high part of the
result will be taken into account.

ADDNUM: LD HL,(NUMBER) ; copy the NUMBER variable to HL

LD A,L

ADD A,D ; add the D content to the low part L

LD L,A

JP NC,NOCY ; take into account the carry

INC H ; if any, increment the high part H

Right after, and before we proceed to the UPDATE label, the code limits
the number to the largest that can be represented with 12 bits (0FFFh),
as per specifications, assessing if its high part has gotten to 10h.

NOCY: LD A,H ; check if the number is greater than

CP 10h ; the maximum 12-bit number

JP C,UPDATE ; if the high part is ≥ 4096

LD HL,0FFFh ; limit the number to the maximum

We get to the UPDATE label after updating the number in HL. When we
call the OUTPUT subprogram, the value is transcribed in the NUMBER
variable and on the LED lights NUMH and NUML. To finish manag-
ing releasing the push-button, we zero the time count again (TIME), in
anticipation of the next button being pushed.

UPDATE: CALL OUTPUT ; update NUMBER and the output ports

LD A,0 ; re-initialize the time counter

LD (TIME),A ; for the next time

Finally, the handler retrieves the content of the saved registers, re-enables
the interrupts and goes back to the interrupted program.

EXIT: POP HL ; restore the saved registers

POP DE

POP BC

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program

8. In large part, this solution falls in among the examples in Sections 4.7.8
and 4.7.3 cited in the text of the exercise. Apart from some necessary
changes, it copies almost all of their code and integrates the two exam-
ples’ solutions. For this reason, many explanations have been omitted or
summarized here, so we suggest going back to those examples ahead of
time for more information.
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We define the address of input port PFREQ, which is connected to the
serial receiver, and the address of the output port OUTWAV, that drives
the virtual DAC.

The ANGLE variable stores the current angle in the sine calculation.
FREQ is used to record the parameter of the frequency. What follow are
the link to the reset and the two different interrupt requests.

PFREQ EQU 02h ; IC input port (frequency)

OUTWAV EQU 05h ; OF output port (sinusoidal wave)

ANGLE EQU 0FC00h ; current angle

FREQ EQU 0FC01h ; frequency parameter

ORG 0000h

JP START

ORG 0030h ; Int. 6

JP HINT6

ORG 0038h ; Int. 7

JP HINT7

ORG 0100h

Downstream of reset, we initialize the Stack Pointer. Then we zero the
OUTWAV output port, the current sine angle and the frequency parame-
ter (before getting to any serial line command, the output will be at zero).
Finally, we enable the interrupts and enter the empty main loop21.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h ; zero the waveform output,

OUT (OUTWAV),A

LD (ANGLE),A ; the angle and

LD (FREQ),A ; the frequency parameter

EI ; enable interrupts

MAIN: JP MAIN ; empty main loop

The interrupt handler launched by the receiver’s request, as usual, saves
and recovers the used registers. Its main task is to read the number from
the serial receiver (through the PFREQ input port) and to copy it to
the FREQ variable. The number is stored after a check is executed on its
value, as required in the text (it should not be over 31). Reading the port
deactivates the interrupt request inside the ASRX component.

HINT6: PUSH AF ; save A and Flags on the Stack

IN A,(PFREQ) ; get the data byte from the serial port,

CP 32 ; limit its value to 31

JP C, NOLIMIT ; jump if C=‘1’ (A < 32)

LD A,31 ; otherwise A ≥ 32, load 31 in A

21 Although the the main loop is inactive, we still insert a save and restore of the
registers in the interrupt handlers so we won’t have to correct the code later on
if we change the main loop.
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NOLIMIT: LD (FREQ),A ; copy it to the FREQ variable

POP AF ; restore the saved registers

EI ; re-enable interrupts

RET ; return to the interrupted program

Interrupt handler HINT7 is launched by the timer every 100 µS, and it
deals with the generation of the wave form. This part of the code is iden-
tical to what we find in Section 4.7.3, so we will not go into the detail
found there.

HINT7: PUSH AF ; save the used registers

PUSH BC

LD A,(FREQ) ; copy the frequency parameter

LD B,A ; to register B

LD A,(ANGLE) ; compute the new angle

ADD A,B ; by adding the frequency parameter

LD (ANGLE),A ; to the previous angle

CALL WAVEFORM ; get the next value from the table

OUT (OUTWAV),A ; copy it to the DAC output port

POP BC ; restore the saved registers

POP AF

EI

RET

The WAVEFORM function generates the waveform through a table of
values, as described in Section 4.7.3.

WAVEFORM: PUSH HL ; save register HL and BC

PUSH BC

LD C,A ; save bit 7 of the angle in C, and mask

AND 01111111B ; it to avoid readings outside the table

LD HL,SINTAB ; get the base address of the table

ADD A,L ; add the index to it

LD L,A ; to obtain the address of the location

JP NC,NoCarry ; of interest in register HL

INC H

NoCarry: LD A,(HL) ; get the value

BIT 7,C ; check if we are in second half wave

JP Z,Positive ; if not, the value is positive

Negative: NEG ; otherwise invert the sign of the value

Positive: POP BC ; restore registers BC and HL

POP HL

RET

The table that describes the values of the positive half sine wave is also
identical so it will not be shown here.
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Microprocessor systems on FPGA

Abstract In this chapter, we will learn what a Field Programmable Gate
Array (FPGA) device is and how we can use it to physically implement what
we have just simulated until now. In fact, Deeds supports both the simulation
and deployment on FPGA of the microprocessor-based systems. After a brief
introduction to the FPGA, we will present a few examples of FPGA-based
experimentation boards that we will use to implement our projects. Then we
will present several practical project examples (i.e. LED light dimmer, special
sound effects, a musical box, a stepper motor controller, and an LCD display-
based stopwatch). We will start from the specification, we will continue with
the phases of conception, hardware design, and assembly language program-
ming, and we will conclude by showing how quickly the Deeds allows their
physical implementation on different FPGA boards.

5.1 Introduction to FPGAs

All the examples in the previous chapters were given with the aim to facilitate
understanding of the architecture and programming techniques of micropro-
cessor systems. These are essential capabilities for any designer/programmer
but we have not yet focused on their practical implementation. Now, readers
who have acquired the basics can work on programming and simulating.

This chapter offers readers a process of experimentation. These examples are
inspired by ones from the previous chapters in terms of approach and com-
plexity. The difference here is that readers can work on them and test how
they work in practice.

The physical implementation of a system depends greatly on the state of the
art of the technologies in use and is subject to rapid changes and consequent
obsolescence. A good understanding of the basic concepts from the previous
chapters will allow designers/programmers to easily approach the changes
coming along the way.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Right now, designers can take advantage of the programmable components
called FPGAs1, and a wide range of boards for prototypes called “FPGA
boards”, based on these components. All the practical examples in this chapter
are made on FPGA boards.
An FPGA component contains a large number of basic logical elements (logical
ports, flip-flops and more complex circuits), that can be connected through
a network of connections to create a system. We choose the connections by
using specific development software provided by the producers of the FPGA.

Their programming is loaded in the chip and kept in the internal memory.
The following figure shows two examples of FPGA devices, produced by In-
tel/Altera FPGA2, on the left, and by Xilinx 3, on the right.

FPGA components are the younger descendants of the the large family of
PLDs4, a term for all the chips that can be specialized for a specific ap-
plication. Their connections can be internally established when the system is
produced or “in the field”, i.e., when it is already in use. Since the 1980s, PLD
components have profoundly changed the world of complex system design.

FPGAs are very valuable from an educational perspective as well. They are
suited to developing prototypes designed quickly and economically for educa-
tional purposes. Finally, an FPGA component should not be confused with a
microcomputer, where the hardware is pre-defined and programming consists
of setting a sequence of instructions to be executed.

5.1.1 Creation of prototypes with FPGA

Not long ago, “prototyping” (creating a prototype) of a circuit required the
connection of a large number of discrete components through soldered wires.
This process was very time-consuming and quite prone to connection errors
or bad wiring. It was often hard to tell if the system malfunction was due to
design error or faulty connections.

1
Field Programmable Gate Arrays

2
https://www.intel.com/content/www/us/en/products/details/fpga.html

3
https://www.xilinx.com/products/silicon-devices/fpga.html

4
Programmable Logic Devices

https://www.intel.com/content/www/us/en/products/details/fpga.html
https://www.xilinx.com/products/silicon-devices/fpga.html
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In laboratories, it was very common to have boards with solderless connections
called “breadboards” with a fixed grill made of internally connected holes. Stu-
dents used them to insert components and the connections were stabilized by
wires. For example, the following figure shows an 8-bit parallel-serial interface
implemented on a breadboard. This was done with commercial integrated cir-
cuit connections that carry out the various logical functions required (logical
ports, flip-flops, registers and counters).

The problems with this prototyping system are similar to those of the tradi-
tional soldered systems. Two advantages are the fact that it is easier to change
the connections and there is no risk associated with using a soldering iron.
A disadvantage is the problem of bad contacts due to wear and tear on the
boards or oxidation of the wires.

Currently, solderless breadboards are very useful for quick prototyping of sys-
tems based on FPGAs. For example, simple interfaces or support circuits
connected to the FPGA board in use can be mounted on a breadboard.

Many types of prototyping boards based on FPGA components are found
on the market. They are developed for educational use and run from the
simplest and cheapest to more complex versions. They include various types of
interfaces in input and output, and allow for the creation of system prototypes,
often without needing additional components aside from the board itself.

If it has the appropriate capacity, an FPGA component can be programmed so
that it implements a microcalculator using the large number of logic elements
at its disposal. When a processor is loaded on an FPGA, it is called a “soft-
processor”, in that its hardware is assembled from the software during the
design development. A soft-processor behaves exactly like a “hard-processor”,
that is, like those physically manufactured on a chip.
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5.1.2 Some examples of FPGA boards

Many models of FPGA boards are available commercially and they have con-
stantly evolving features and capabilities. They are made for a broad spec-
trum of applications: from cheap, simple boards for educational use to fast,
complex boards for professional use. Designers and experimenters can find
the right board on the market for their applications, in terms of capabilities,
software availability and budget.

As an example, we’ll give a brief description of some FPGA boards suitable for
implementing the microprocessor systems developed in the book. It should be
noted that each of these has the capacity to host much more complex systems
and could allow for a natural transition to professional design. Some of these
boards will be described in more detail in Section 5.4, regarding elements on
it that could be put to advantage in conjunction with the Deeds environment.
For now, we will only give some general information about them.

The following figure shows the DE2 board, produced by Terasic5 for Intel/Al-
tera FPGA6. This board is supported by Deeds.

This was conceived for mid/high complexity digital circuit experimentation
and includes numerous devices, from the simplest (switches, push-buttons,
LED lights, seven-segment displays) to more complex (LCD matrix displays,

5
https://www.terasic.com.tw/en/

6
https://www.intel.com/content/www/us/en/products/details/fpga.html

https://www.terasic.com.tw/en/
https://www.intel.com/content/www/us/en/products/details/fpga.html
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Ethernet network interfaces, A- and B-type USB 2.0 interfaces, connectors
for SD memory cards, analog audio inputs and outputs, analog video input,
VGA video output, etc.).

The core of the board is the chip EP2C35 “Cyclone® II” family from Intel/Al-
tera FPGA, which has more than 33,000 logic units (the basic logic block will
be explained a but further ahead in Section 5.2). The DE2 board allows for
the creation of simple, introductory projects (that use a small portion of its
potential) to complex systems that can include specialized microcomputers
and interfaces.

The following figure shows the DE0-CV board produced by Terasic for In-
tel/Altera FPGA. As the image shows, it has push-buttons, switches, LED
lights, seven-segment displays, connectors and other devices, although fewer
than the previous board had. This board is also supported by Deeds.

The core of the board is the big, black square in the center. This is the
FPGA chip 5CEBA4, part of the “Cyclone® V” family, produced by In-
tel/Altera FPGA. This chip contains a matrix of about 49,000 logic units and
3,080 Kbits of integrated RAM.

Other, larger members of the same chip family include the ARM CortexTM

dual-core microprocessor by ARM (Advanced RISC Machine)7, which is used
in many mobile phones.

7
https://www.arm.com/products/silicon-ip-cpu

https://www.arm.com/products/silicon-ip-cpu
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The following figure shows another example: the ARTY S7-50 board produced
by Digilent8, which uses the XC7S50 chip from the “Spartan®-7” family, by
Xilinx 9. The FPGA contains over 52,000 basic combinational blocks and over
65,000 flip-flops. The FPGA chip is the one positioned at a 45 degree angle
on the board10.

As in the previous example, this board has push-buttons, switches, LED lights
and other interfaces. More specifically, we have connectors designed to host in-
put and output boards (“shields”), which were originally designed for Arduino
microcontroller boards11.

The last example we will show on these pages is a very inexpensive FPGA
board available online and supported by Deeds (see the following figure). It
is based on a “Cyclone® II EP2C5T144C8” chip from Intel/Altera FPGA.

The user has four connectors positioned around the chip, only three LED
lights and one push-button. The two 10-pin connectors on the left, however,
are used to program the FPGA chip. For brevity’s sake, we will refer to this
board as “EP2C5”.

To implement our designs, which often need multiple input and output devices,
we need to use the four connectors to externally connect all the necessary
push-buttons, switches, LED lights and displays.

8
https://store.digilentinc.com

9
https://www.xilinx.com/products/silicon-devices/fpga.html

10
This board is not yet supported by the Deeds environment.

11
https://www.arduino.cc/

https://store.digilentinc.com
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.arduino.cc/
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The chip is big enough to implement a microcomputer based on the Deeds
DMC8 processor if it is configured with a small RAM and ROM (once the
DMC8 is loaded on the FPGA component, it uses about half of the 4,600 logic
units available and only 400 of the 4,600 flip-flops).

5.2 The architecture of FPGA components

FPGA makers offer a wide array of devices classified into “component fami-
lies”, that differ in their complexity and their fields of application.

Some typical examples
are audio/video signal
processing, radar, au-
tomobile systems and
generally, all the ap-
plications that require
high performance but
don’t have the volume
to justify the cost of a
“full custom” chip.

Despite the wide va-
riety, all the devices
have the same base
architectural structure
in common.

An FPGA chip is es-
sentially a big matrix
of logic blocks set in
rows and columns as
shown in the figure at
the right.
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Every block contains one or more flip-flops and programmable combinational
networks. A matrix of connections goes across the whole chip, using up most
of its area.

At every intersection of the matrix, programmable electronic switches allow
for the local connection between rows and columns, and the interconnections
with the blocks. Local sub-matrices of connections can be made available to
improve the speed of communication between nearby blocks.

There can also be special blocks inside the matrix intended for specific func-
tions like read/write RAM memory, arithmetic circuits (often multipliers),
etc. The matrix is also surrounded along its four edges, by input and output
logic blocks responsible for the interface of the chip and external devices.

The previous figure shows only the elements of the chip that are available
for the design. It does not show the memory elements that program the con-
nections and configure the logic blocks. There is a high number of flip-flops
connected in cascade, that make up a very long shift register as shown in the
following figure.

A specific serial interface (called JTAG, which will be explained later) is tasked
with writing the flip-flops in the programming phase of the FPGA chip (in the
normal functioning, however, these flip-flops are not accessible, they cannot
be used as part of our projects).

The FPGA component must be re-programmed every time the system is
turned on12. To solve this problem, we add to the circuit board a Flash ROM
memory chip (see Appendix A.1) that stores the programming information.

At every system power up, the Flash ROM will transfer the programming
information into the FPGA, through dedicated pins.

12 As we know, a flip-flop does not store information when the power is off.
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5.2.1 Logic blocks

The following figure shows the basic schematic of one generic “logic block”
in an FPGA. The block has a type-E flip-flop (edge-triggered), driven by a
combinational logic network.

The combinational network’s functionality is controlled by the configuration
shift register (“Setting”, in the upper part of the figure), and also by the 2-
to-1 multiplexer on the right, which gives us the option to use the flip-flop to
register the output of the combinational network.

It might be interesting to more closely examine the combinational network,
that is implemented in the form of an LUT (Look-Up Table). Its values are
selected by a multiplexer driven by the network inputs (see the figure below).

During the FPGA chip programming operations, the values of the desired
table are stored in the flip-flops of the above-mentioned shift register. Once
they are stored, these values remain the same during the normal operations
of the FPGA, and the multiplexer copies them on output D, according to the
combination of A, B and C, giving us the requested Boolean function.
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Notice that according to the FPGA family, the logic block might be more
complex than what is presented here. For example, it might also contain an
adder, XOR networks, other flip-flops and multiple combinational networks.

5.2.2 JTAG programming

JTAG is the acronym for the (Joint Test Action Group) consortium that
defined a standard protocol for the functional testing of integrated circuits
toward the end of the 1980s. It was later published as IEEE 1149.1 (“IEEE
Standard Test Access Port and Boundary-Scan Architecture”). In the fol-
lowing, this will be referred to as JTAG (the term “Boundary-Scan” is also
used)13.

The version of this protocol released in 1994 added the capacity to program
memory, microcontrollers and other devices. It also made it possible to execute
functional debugging of the firmware and activate automatic tests (“Built-
In Self-Test”), defined by the maker of the component. To achieve this, a
standard language (“Boundary Scan Description Language”) was developed
to access the components using the JTAG interface.

Currently, the JTAG interface is the only method used to access the internal
hardware of electronic systems such as mobile phones, tablets, wireless “access
points” etc. both for testing during production and for fault diagnostics.

Let’s examine its basic operations. Briefly, the standard offers the possibility
to stop the normal system operations and going to a modality where the JTAG
interface is activated. The interface takes control of all the external pins of
the components and the test and programming circuits in the system itself.

The physical JTAG interface is composed of a limited number of standard
connections. The simplest set allows us to communicate with the circuit by
using the TCK, TMS, TDI and TDO lines as shown in the following figure.

Pin Name Function

TCK Test Clock Data Clock Pin

TMS Test Mode Select Mode Control and Operation Selection

TDI Test Data In Serial Data Input Pin (toward the device)

TDO Test Data Out Serial Data Output Pin (from the device)

13
https://www.jtag.com

https://www.jtag.com
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All the signals of the JTAG interface are serial and synchronized by the clock
TCK (usually in the 10 .. 100 MHz interval). Activating TMS signals the sys-
tem to turn on the JTAG-compliant mode. So, through the same line, we can
execute the required operation by using a specific state algorithm, the “JTAG
State Machine” (not described here).

The standard also defines an optional control line, Test Reset (TRST), but its
functionality can be obtained by controlling TMS following a specific sequence
and it is often not used as in the example above.

The standard furthermore defines the chain connection of the TDI and TDO
pins of more than one device so that we can access all the JTAG-compliant
devices located on the same board (see the following figure).

This method makes it possible to run a “chain integrity test”, for example.
Each JTAG-compliant device has its own ID code. All the ID codes can be
read and checked against the design project ID to see if the JTAG chain works
as it should.

5.2.3 Devices for programming FPGAs

Many programmable devices like FPGAs use JTAG for programming, and
not only for testing purposes.

It should be noted that FPGA chips are programmable after they have been
soldered on the board. This brings many advantages including simplifying the
programming phase, avoiding the use of external programmers and adding
the possibility of updating and changing the networks programmed inside the
chip. This all makes FPGA systems ideal for the implementation of prototypes
and experimental circuits, including those for educational use.

There are differ-
ent standards for
the physical JTAG
interface.

The simplest uses a
10-pin connector, as
shown in the figure on
the right, which refers
to an EP2C5 board.
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In the following figure, we see a JTAG programmer and its 10-pin cable (on
the right) as well as a standard USB cable to connect it to a PC. The software
is provided by the maker of the FPGA.

Often, especially in more complete boards, the programmer is integrated and
available through a dedicated USB interface. This is the case for the first three
boards described before.

5.3 FPGA development tools

The makers of FPGAs sell proprietary development tools for professional de-
signers to implement complex systems. The makers provide reduced versions
of the same tools usually for free, to educators.

Clearly, the goal is to promote their products to future designers by influencing
their choices later on in the world of work. This is why makers provide a great
deal of documentation on their software.

In the following, we present a brief panorama of what is available for free
online. All the tools mentioned offer similar functional capabilities, such as
schematic editors, source code editors, compilers, pin planners and optimiza-
tion tools. They make it possible to design digital systems by using logical
schematics or languages to describe the hardware (HDL) such as the Verilog14,
the VHDL15, or the System-C16.

The large number of functions available that make a professional’s work more
productive, may give a beginner the impression of a complex arena that is
difficult to manage. In the following, we will see that Deeds allows for the
use of FPGAs for rapid prototyping of our projects without entering into the
typical technicalities of professional tools.

14
https://standards.ieee.org/standard/1800-2017.html

15
https://standards.ieee.org/standard/1076_6-2004.html

16
https://accellera.org/community/systemc

https://standards.ieee.org/standard/1800-2017.html
https://standards.ieee.org/standard/1076_6-2004.html
https://accellera.org/community/systemc
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Regarding boards based onXilinx FPGA devices, at the moment this book is
being written, there are free tools available such as: Vivado® Design Suite
HL WebPACK™ and ISE® WebPACK™. The following screen-shot shows
Vivado®, which is made for the most recent families of devices.

Below, the ISE®, which supports the less recent FPGA families.
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Intel/Altera FPGA offers two free tools: Quartus® Prime Lite Edition™ and
Quartus® II Web Edition™. The following screenshot shows the main window
of the first. It supports the most recent families of FPGAs.

The previous versions of this software are called Quartus® II. The main com-
mand window for project management is found below.

In recent years, due to the increase in the number of families and the com-
plexity of chips FPGA makers have put greater effort into developing and
maintaining newer generation tools rather than guaranteeing they would be
compatible with older ones.

In general, less recent FPGA boards need to be used with older versions of
software. Therefore, it is important to study the documentation on a pro-
ducer’s website before choosing chips and tools.
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A useful function (Software Selector) associates an FPGA family to the cor-
responding software to use.

The screenshot below, from the Intel/Altera FPGA website shows that the
Cyclone® II family is supported by version “13.0 - ServicePack 1 ” and pre-
vious versions from Quartus® II Web Edition™.

5.4 The FPGA boards used in the examples

5.4.1 The DE2 board

As introduced before, in Section 5.1.2, the Terasic/Altera board DE217 makes
it possible to do simple, basic projects (using few of the boards resources), as
well as systems including a microcomputer and its interfaces.

The DE2 board has various types of components18. Those interested in learn-
ing more about what it can do should consult the exhaustive documentation
on the manufacturer’s website19, which also contains the user manual. In our
examples, we use those components of the board that can be directly inter-
faced with the projects generated by Deeds.

For example, there are 18 slide switches (Sw17 .. Sw0) connected to 18 pins
of the FPGA chip (see the following figure).

17
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=30

18
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=
30&PartNo=2#section

19
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=
30&PartNo=4#section

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=30
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=30&PartNo=2#section
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=30&PartNo=2#section
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=30&PartNo=4#section
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=39&No=30&PartNo=4#section
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The manufacturer defined the switch connection so as to provide a ‘0’ to the
FPGA pins when their cursors are brought low, toward the edge of the board
and a ‘1’ when they are high.

On the bottom right we see 4 push-buttons (Key3 .. Key0), which are also
connected to the FPGA input pins (see the following figure).

The push-button connections are set so as to generate a ‘0’ on the correspond-
ing FPGA chip pin when the push-button is pressed, and a ‘1’ when it is in
idle position.

Directly above the switches, there are 18 red LED lights (LEDR17 .. LEDR0),
as indicated in the following figure.

There are also 9 green LED lights (see the following figure), 8 of which are
placed on the push-buttons (LEDG7 .. LEDG0), and one (LEDG8) positioned
near the seven-segment display.

The eight seven-segment displays (HEX7 .. HEX0, see the following figure),
can manage the individual segments by driving them directly (the native
modality of the board).
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Deeds allows for the use of the “decoded” displays in the library.

These components make it possible to use the
board display by providing the 4-bit number in
binary to show as a hexadecimal number.

The board also has two 40-pin “expansion con-
nectors” (GPIO 0 e GPIO 1, see the figure on
the right). The connector pins are directly con-
nected to the FPGA chip and can be pro-
grammed individually as inputs or as outputs.
See the above-mentioned user manual for more
information on connectors’ pinouts (a few power
supply lines are also available on them).

Deeds allows the user to connect the connector
pins freely to external networks, as we will see
later in this chapter.

There is a special issue about clock generators on the board, where we find
two crystal oscillators, one at 27 MHz, and the other at 50 MHz.

Deeds supports both generators. From the second one, it derives (by division)
our projects’ clockwork frequencies. Therefore, we can define clock frequencies
of 50MHz, 27MHz, 10MHz, 5MHz, 2MHz, 1MHz, 500KHz, 200KHz, 100KHz,
etc. down to the lowest, 1Hz ).

5.4.2 The DE0-CV board

In this chapter, we will also use the Terasic/Altera DE0-CV board20. As
mentioned in Section 5.1.2, this board makes it possible to develop projects
of varying levels of complexity, similar to what we saw for the DE2 board. It
has an FPGA chip of the newest generation “Cyclone® V” (which is more
powerful) but has fewer switches, push-buttons, LED lights and displays.

The DE0-CV board also has a wide variety of components21. The manufac-
turer’s website has exhaustive documentation22. The user manual is a good
starting point to learn more about its components.

Now, let’s look at components of the board that will allow us to interact
with our networks. The figure below shows 10 slide switches (Sw9 .. Sw0),
connected to 10 FPGA inputs.

20
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=
921

21
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=
921&PartNo=2

22
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=
921&PartNo=4

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=4
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=167&No=921&PartNo=4
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They are connected in order to provide the chip pins with a ‘0’ when the
cursor is low, toward the edge of the board and a ‘1’ when we move it high.

At the lower right hand side of the following figure, there are 5 push-buttons
(Key3 .. Key0 e RESET), which are also connected to the input pins of the
FPGA. The push-buttons generate a ‘0’ on the corresponding pin of the FPGA
chip when the push-button is pressed, and a ‘1’ when it is not.

There are 10 red LED lights (LEDR9 .. LEDR0) in line above the switches,
as shown in the figure below. There are no green LED lights on this board.

As shown in the following figure, there are six seven-segment displays. We can
manage their individual segments. Deeds allows for the use of the “decoded”
displays here as well (These are the same as those belonging to the DE2
board).

The board also has two 40-pin “expansion connectors” (GPIO 0 e GPIO 1,
see the following figure), which are identical to those in the DE2 board.
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The connectors, here as well, are directly con-
nected to the FPGA pins and can be defined as
inputs or outputs. We can also connect the con-
nector pins to external networks.

See the board user manual for more information
on connectors’ pinouts (a few power supply lines
are also available on them).

We see only one 50MHz quartz clock generator on
this board. With the support of Deeds, we can use
this to obtain the clock work frequencies of our
projects (50MHz, 10MHz, 5MHz, 2MHz, 1MHz,
500KHz, 200KHz, 100KHz, etc. down to 1Hz ).

5.4.3 The EP2C5 board

The third board used in the examples of this book is called the “EP2C5”.
It is an economical, unbranded FPGA board that is easy to find online. It
is based on the “Cyclone® II EP2C5T144C8” chip from Intel/Altera FPGA.
As mentioned in Section 5.1.2, this board allows us to create networks that
are smaller in size. Yet, we are still able to load a DMC8 microcomputer on
it, if configured with a small sized ROM and RAM system.

Documentation for this board, including the electrical schematics can be found
online23. It has no switches and offers the user only one push-button. There are
only three red LED lights and no display. Essentially, any interface component
that we would need would have to be connected to the board.

The one available push-button (KEY0) is shown in the following figure.

On the same side of the board, we find the three LED lights (LED2..LED0).

23
http://land-boards.com/blwiki/index.php?title=Cyclone_II_EP2C5_Mini_Dev_Board

http://land-boards.com/blwiki/index.php?title=Cyclone_II_EP2C5_Mini_Dev_Board
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The board has four 28-
pin connectors (P4, P3,
P2 and P1, see the fig-
ure on the right) con-
nected directly to the
FPGA chip pins.

They can be set as in-
puts or outputs and
given the scarcity of
devices on the board,
they’ll necessarily be
used to connect to
external interfaces, as
shown in Section 5.5.

The EP2C5 board has a 50MHz clock generator, like the boards we have stud-
ied before. For our projects, Deeds offers the use of the native clock frequency
and many of its submultiples (those listed for the DE0-CV board).

5.5 Microprocessor system prototypes on FPGA

In this section, we will show how to implement a microprocessor system on
FPGA that is designed through the Deeds software suite. In the examples, we
will use the 3 FPGA boards described in Sections 5.1.2 and 5.4). In any case,
the concepts presented here can be reused on every FPGA board supported by
Deeds to create not only microprocessor systems but also any digital network.

5.5.1 The steps to take

To put a project created with Deeds on an FPGA board, we need to follow the
procedure below, which is applicable for all the boards that Deeds supports.
After simulating our system to check that it works correctly, we take the
following steps:

— Associate the input and output devices on the Deeds schematic with those
available on the chosen FPGA board,

— Launch the automatic conversion of the Deeds project in VHDL code,
— Program the FPGA with the Quartus® II Web Edition™ software.

In the following, we will go through this procedure step by step to provide a
practical example to refer to. First, we will present a microprocessor system
to implement on FPGA. Then, we will provide an example for each board
presented in Sections 5.1.2 and 5.4.
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If none of these boards is available, we suggest following this procedure re-
gardless since it is usable in all the boards supported by Deeds. By studying
the DE2 and DE0-CV boards, we will learn to use the I/O devices already on
the board, while studying the EP2C5 will show us how to connect input and
output devices that are not on the board through the board’s connectors.

5.5.2 A system to implement on FPGA: An example

To facilitate learning, we
will begin with a simple
example: emulating a 4-
bit bidirectional binary
counter.

The image on the right
is a schematic that
includes a “DMC8
microcomputer” com-
ponent (in its basic
version, introduced in
Section 2.4.1), config-
ured with 1 kB of ROM
and 1 kB of RAM.

An input checks the
direction of the count
(UD), and a push-button
is connected to the reset
input RES.

A bar of 4 LED lights (STATE) is connected to output port OA. The interrupt
line is set at ‘1’ since it is not used.

When UD is at ‘0’, the count goes up; when it is at ‘1’, it goes down. Notice
the input port IA wiring, where we connected24 the unused lines at ‘0’.

Now, let’s look at the program loaded in the microcomputer. First, we see the
label definition for input port CNTRL, where input UD is read from. Next,
we see the label definition for output port STATE, where the internal state
of the counter is displayed. Then we find the usual link to the reset.

CNTRL EQU 00h ; IA input port (UD control line, bit 0)

STATE EQU 00h ; OA output port (the counter output)

ORG 0000h ; link to the reset

JP 0100h

ORG 0100h

24 If we don’t connect the unused lines to ‘0’ (or ‘1’), Deeds signals the reading of
unknown values during the simulation.



460 5 Microprocessor systems on FPGA

Before entering the program’s main loop, we zero output port STATE and
register B, which contains the internal state of the counter. We do not use the
Stack in the code, so we do not initialize the Stack Pointer.

INIT: LD A,00h ; initialize the counter state

OUT (STATE),A ; and the outputs to zero

LD B,A

Every time the main loop is executed, the UD input is first checked (by reading
the input port CNTRL), so register B is then incremented or decremented.

MAIN: IN A,(CNTRL) ; read the input port CNTRL

BIT 0,A ; check the value of input line UD

JP NZ,DN ; jump and decrement the state if it is at ‘1’

UP: INC B ; otherwise, increment the state

JP UPDATE ; jump to update and display it

DN: DEC B ; decrement the state

Then bits 7, 6, 5 and 4 are set to zero through bit masking to reduce the
count to 4 bits. Finally, the new value of the count is shown on output port
STATE.

UPDATE: LD A,B ; mask the bits in position 7,6,5 and 4

AND 0Fh ; to reduce the count to 4 bits

LD B,A ; update the state in B

OUT (STATE),A ; and copy it to the output lines

JP MAIN

Note that bit masking is not strictly necessary since the bits connected to
the bar of LED lights are only those in positions 3, 2, 1 and 0, but it is done
anyway to make the code more legible.

5.5.3 Implementing the network on an FPGA board

Now let’s look at the procedure required for implementing the system above
on an FPGA board. The following explanation goes more into detail on DE2,
DE0-CV and EP2C5 boards25.

Associating input and output devices

Let’s study how to associate the input and output devices in the Deeds
schematic with those available on the FPGA board.

The following figure shows the Deeds-DcS main page with our project open
in the editor. We press the “Test on FPGA” button on the main tool bar
(highlighted by the red box on the upper right hand side).

25 There are extensive tutorials available about this procedure on the Deeds website.
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A new window, shown in the following figure, will open. This allows us to
associate the push-buttons, switches, clock generators, LED lights, etc. in our
schematic with their respective components on the FPGA board. By using
expansion connectors, we can connect other devices. In some boards, such as
the EP2C5, this operation is necessary since the components available to the
designer are not enough to create our system.

In the box at the left, we can see the input devices in the schematic. By clicking
on “Outputs” (in the green box) we can see the output devices. When we click
on the upper left hand side menu (in the red box), we can select the FPGA
board where we want to implement the project defined in the schematic.

When we select an FPGA board, its inputs (or outputs, depending on the
page selected) will be made available to the designer. When we click on one
of the schematic’s inputs (or outputs), the inputs (or outputs) of the board
that we can associate with it will be shown.

The following pages will show the associations chosen for each board.
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5.5.4 Settings for the DE2 board

Associating input devices

When we select the DE2 board, the window below will appear. We have clicked
on input UD in order to associate it with one of the switches on the DE2.
Here, we have chosen the SW[00] switch, as shown in the blue rectangle.
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This window shows both the position of the component selected in the Deeds
schematic and that of the one associated to it on the FPGA board, on the
right. Both are highlighted in red (see the arrows).

The same procedure was followed for input RES, which was associated to
push-button KEY[00] and set to generate a low level when pressed (see the
figure at the bottom of the opposite page).

We have chosen the DMC8 Microcomputer component in order to set its clock
frequency (see the following figure).

Although the clock is fixed at 10 MHz in the simulation, when
creating it on FPGA, we can select a lower or higher fre-
quency clock source. See the figure at the right. However, if
we choose a frequency that is different from 10 MHz, we need
to consider the fact that the calculations for any delay loops
will have to be redone for the new frequency.

As shown in the blue rectangle in the center of the figure
above, a 200 Hz clock was chosen in order to make human
interaction with the device possible. There are other options
for function checks on the clock for debugging, but they have
been omitted here for simplicity’s sake.

All the clock frequencies we can choose in the box ensure the proper operations
of the microcomputer. As highlighted by the red arrows in the figure above, the
clock generator on the board corresponds to the selected DMC8 component.
This association is shown by the red outlines.
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Associating output devices

Once the input devices are defined, we go on to associating the outputs by
clicking on the “Outputs” palette outlined in green in the figure.

We select the STATE component (outlined in blue), then we associate the red
LED lights available on the FPGA board to its four pins (one by one).
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Now, we focus on the figures on the opposite page. In the window shown at
the top, the STATE component and index pin 0 (the least significant bit) were
selected (highlighted by the blue outline). Then we select the red LED light
that we want to associate to it (LEDR[00]) using the menu at the upper right
hand side (also outlined in blue).

In the example at the bottom, we select index pin 1 (the bit of weight 2) and
associate LEDR[01] to it, as shown by the blue box. Using the same procedure,
we then associate the LED lights belonging to STATE of weight 4 and 8 to
the LED lights LEDR[02] and LEDR[03].

Notice that for output components as well, the window shows the device
selected in the Deeds schematic and the FPGA device associated to it in a
red box (as highlighted by the red arrows in the figure).

The following picture shows a useful overview of the function of the devices.

5.5.5 Settings for the DE0-CV board

Associating input devices

When we select the DE0-CV board (see the yellow box), the window will
appear as follows. With a click, we also select input UD.
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We have associated input UD to the SW[00] switch on the DE0-CV board, as
shown by the red boxes and arrows in the figure.

We’ll do the same thing (see the following figure) with input RES: associate
it to KEY[00] (set to generate a low level if pressed).

We have associated a 200 Hz clock source to the microcomputer to make the
behavior of the device observable with the human eye (see more on the clock
options in Section 5.5.4).
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Associating output devices

Once the input devices are associated, we will deal with the output devices
by clicking on the “Outputs” palette (see the green box in the figure).

As before, the window lets us select the output device in the Deeds schematic
and associate it to an output device on the FPGA board (as shown in the
figure, in blue).

We follow the same procedure that we did for input devices and associate the
four STATE outputs to the LED lights available on the FPGA board. We
select STATE and the index of pin 0 (see the boxes on the upper left hand
side of the window), then we use the list box control at the upper right hand
side to associate that pin to the red LED light LEDR[00] on the board.

Once this is done, the Deeds component and the corresponding physical device
will be marked with red boxes (indicated here by the arrows). We repeat the
procedure for the other indexes and associate the bits of weight 2, 4 and 8, to
the LED lights LEDR[01], LEDR[02] and LEDR[03].

The following figure shows a summary of the associations, useful to test the
system on the board.
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5.5.6 Settings for the EP2C5 board

Associating input devices

When we select the EP2C5 board, the following screen will appear. As con-
sidered in Section 5.4.3, the only input device on the board is the KEY0
push-button, which we will use for the reset input RES.
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In the figure at the upper part of the opposite page, we selected line RES
in the list of inputs on the left, then we associated it to that of the KEY0
push-button (see blue boxes). The arrows point out this association in the
schematic and on the board.

To connect the remaining input and output devices, we need to rely on the
expansion connectors available on the board.

The figure at the bottom of the opposite page shows the association between
input line UD and connector pin P1 (chosen arbitrarily among those avail-
able). When we select the connector pin, the drawing of the connector appears
with its pins numbered (as seen in the figure). This will be useful when we
need to physically connect a wire to the pin because the red arrow points out
its position and number.

The clock generator is similar to that of the DE0-CV board (50 Mhz ) and
is managed in the same way by Deeds. As shown in the following figure, we
assign a frequency of 200 Hz to the microcomputer to allow for interaction
with the user (for more on this, see the clock options in Section 5.5.4).

Associating output devices

The following figure shows that when we click on “Outputs” (in the green
box) we can go on to assign output devices.

On the screen in the blue boxes, we see that pin P1[IO 71] on connector P1,
has been associated to index pin 0 on the STATE lines.
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Pins P1[IO 63], P1[IO 53] and P1[IO 44] are assigned to index lines 1, 2 and
3, respectively. As before, when we select the connector pin, the drawing of
the connector appears (see figure) with a red arrow indicating the position of
the pin.

Connection to physical devices

Once we have assigned the pins through software, we need to physically con-
nect the board and the input/output devices. In this subsection, we will give
some practical directions on this subject that should be useful not only for
this specific case but also for all the examples given.

When we want to make an input component like an
“Input Switch” correspond to a physical slide switch,
the necessary electrical connections have already been
set on boards such as the DE2 and the DE0-CV.

In the case where we need to reach the same goal by using an expansion
connector pin, we should follow some simple rules to electrically connect it.
We have already seen some points on this in the example in Section 4.7.7).

Switches and push-buttons are electromechanical devices and we need to
transform their mechanical action into a two-level physical quantity that can
be read by a logical device.

The following figure shows the electrical symbols of four of these single-pole
devices (there are also other types). They are, from left to right: (1) an “on-off
switch”, (2) a “double throw switch”, (3) a “normally open push-button” and
(4) a “normally closed push-button”.
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(1) The “on-off switch” makes it possible to open or close an electric circuit
between electrodes A and B. For example, to turn the light in a room on or
off, we use this switch. The device has two stable positions, so the state that
we set manually is kept and to change it, we have to push it again.

(2) The “double throw switch” allows us to re-route the current into two
distinct connections (A ↔ B, or A ↔ C). This type of switch has two stable
positions26. Here, for reasons of availability, we use this kind of switch but
without connecting one of the two electrodes (B or C), so they will actually
be used as on-off switches.

(3) The “normally open push-button” behaves like an on-off switch electrically,
but it has only one mechanically stable position, that is it closes the contact
if we press it and the return spring brings it back to the open position. Other
devices that behave this way are keyboard keys, and the buttons on elevators,
remote controls or televisions.

(4) The “normally closed push-button” behaves like the open one mechani-
cally, but the contact remains closed when at rest and it opens only when we
press it (we will not use this model in our examples).

The left side of the following figure shows the connections of an on-off switch
to a connector pin, which is connected to an FPGA chip input (the NOT gate
is purely illustrative and represents a logical input).

In the figure on the right, the electrical network is identical but we are con-
necting a push-button. The difference is only mechanical, in the way they are
activated, as described before (and so, in the way they are used).

If the contact is open, the logical input is kept high by the “pull up” resistor27.
When the contact is closed, however, the logical input is forced low by the
electrical connection to the ground (Gnd).

As discussed in the example in (Section 4.7.7), the mechanical properties
of electromechanical devices make them susceptible to “mechanical contact

26 Note that when the contact is moved, it is unconnected for an instant from either
contact before closing on the chosen side.

27 The 10KΩ (Kilo-Ohm) value is used as an example and needs to be adapted to
the electrical parameters of the input.
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bounces”. These are generally resolved by doing multiple reads through soft-
ware. However, in our elemental example, we will ignore this problem for
simplicity’s sake.

On the left of the following figure, we see a double throw slide switch, whose
contact happens by sliding a cursor. The central contact A gets connected by
sliding the cursor to contact B or C.

The movement is stable, that is, the cursor remains where we move it. In our
examples, we will employ it as an on-off switch, using the contact pairs AB
or AC arbitrarily.

In the middle and on the right, we have a “tactile” push-button (shown right
side up and on its side). The internal contact is kept open by a spring, but it
closes when pressed. When it is released, it opens again.

As the figure shows, the push-buttons often have 4 pins and we can choose
those most convenient for connecting to the circuit. A1 and A2 are connected
together internally, as are B1 and B2 (so for example we can use only the
A1/B1 pair and ignore the other).

In the figure on the left, we see the connection
between an LED light and a connector pin that
comes from the FPGA (the NOT gate is there
as a formality and represents the output of any
logical component).

The LED light must be connected with the right polarity. In the figure, the
anode is indicated by an A and the cathode by a C28. The resistance limits
the working current29 of the LED light.

LED lights on the market come in a wide variety of colors, shapes,
sizes and power characteristics. The figure on the left shows a green
LED light. Following convention, the longer terminal is always the
anode (A) and the shorter is the cathode (C).

When the FPGA output is low, the tension generated by the logic
gate is not enough to turn the light on. When the output is high, it
can provide enough current to turn on a low-power light, suitable
for our purposes.

28 The terms “anode” and “cathode”, come from the field of Electrochemistry; the
anode is at a higher tension than the cathode.

29 The value of 330Ω is just an example that can be applied here. It would be
reduced according to the electrical parameters of the LED lights and the output.
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Let’s go back to our example. For ease of consultation, the figure below pro-
vides a table summarizing the associations that have been made (as reported
in Deeds).

The result of these con-
nections will be similar
to what we see in the
figure on the right.

We have attached the
central pin of the slide
switch to input UD,
that is pin P1[IO 40]
of the connector at the
bottom (the pin is sim-
ply reported as ‘40’ on
the silk-screen printing
of the board).

We have also connected
one of the two wires
of a 10 KΩ resistor to
the same pin of the
slide switch, while we
brought the other one
to the power supply
(Vcc, 3.3V, pin on the
connector at the left).

Either of the opposite pins of the switch will be connected to the ground
(GND, pin on the connector at the right).

Finally, we connect the 4 LED lights to the outputs that we assigned to
connector pins P1[IO 44], P1[IO 53], P1[IO 63] and P1[IO 71] at the bottom
(shown as ‘44’, ‘53’, ‘63’ and ‘71’ on the silk-screen printing of the board). We
connect these pins to the anodes of the LED lights, taking care to insert the
330Ω resistor. The cathodes (the shorter terminals) will then be connected
to the ground (GND, the same as the pin above).
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5.5.7 Converting the Deeds project into VHDL

When we have finished associating the input and output devices of the board
to the Deeds project, we generate the VHDL code by clicking on the “Generate
Project” button (highlighted by the blue box in the figure below).

After the short time it takes for the VHDL code to be generated automatically,
we get to the following window:

Clicking on the “Launch Quartus® II” button will run the software tool of
the same name30 (introduced in Section 5.3), with which we will go on to
program the board.

30 The Deeds website tutorials on using FPGAs, have useful information on in-
stalling the software.
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5.5.8 Programming the FPGA board

Once Quartus® II is open, the following window will appear. If we click on the
“Files” command in the blue box in the figure, we can examine the VHDL files
that come from the Deeds schematic and the association of the input/output
components. This may be interesting for those who want to learn more, but
it is not necessary for those who want to simply program the circuit on the
FPGA board.

Before going on to actually programming the board, we need to process the
program’s VHDL file by pressing the “Compile” command (see the red box).
After a few minutes, an overview on the project compilation will appear in
the window. This indicates that the project is now ready to be loaded on the
FPGA board. Usually, many warnings are generated but for the educational
scope of these projects, we do not need to take them into account unless they
are explicit error messages.

To load the compiled project on the FPGA board, we need to click on the
“Programmer” command to open the programmer tool window (highlighted
by the red box in the following figure).
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The programmer window will open (see the following figure).

When we click on the “Hardware Setup” button (see the red box), a dialog
box will open. This allows us to select the USB port where the programming
hardware is connected.

In the “Hardware Setup” dialog box (see the figure below), when we open
the “Currently Selected Hardware” drop-down list (in the red box) we can
select (for example) “USB Blaster [USB-0]”, the USB port recognized by the
operating system as connected to the programming hardware in use31.

When we close this window, we return to the programmer window (see the
following figure), where we can launch the board programming by clicking on
the “Start” button (outlined in red).

31
If this option weren’t there, we would have to check that the FPGA is connected to the PC
and powered. If that option were still missing, we would have to check that the QUARTUS
drivers were updated and installed correctly. For more on this, consult the tutorials on the
Deeds website: https://www.digitalelectronicsdeeds.com/learningmaterials/labtopics.html#
fpgatutorial

https://www.digitalelectronicsdeeds.com/learningmaterials/labtopics.html#fpgatutorial
https://www.digitalelectronicsdeeds.com/learningmaterials/labtopics.html#fpgatutorial
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During the programming phase, we can see how far along we are by looking
at the progress bar (see the blue outline in the figure). Once the process is
over, we can test the functionality of our project on the FPGA board.

5.6 Project examples

As mentioned in the beginning of this last chapter, we offer some projects
developed with the Deeds simulator that are easy to replicate and experiment
with on an FPGA board.

Each project comes with an implementation on all three boards that we have
shown in this chapter. This will allow the reader who has one of these boards
on hand to immediately reproduce these projects.

All the projects shown here are available in their entirety on the Deeds website
on the pages regarding this book. Readers can redesign and extrapolate on
this material as they like, using the skills they have developed and also that
bit of creativity that any future microprocessor system designer/programmer
should have. Readers are encouraged to check that the system is working
correctly, go through the steps shown here, and then to try to modify it in a
creative way.

With the first example, we will learn to control the luminosity of an LED light
and with the second we will attempt to create a light gadget. Then we will
focus on producing sounds, first by creating a special effects generator and
then a music box that can play a famous tune.

From these projects with fun applications, we will move on to more techni-
cal/industrial examples. We will first design and build a stepper motor con-
troller and then we will provide two examples of the use of a small alphanu-
meric and graphical display that had been used in a very popular mobile
phone.
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As mentioned at the beginning of this chapter, the physical implementation of
a system depends greatly on the technologies in use. Cutting edge technologies
evolve and become obsolete rapidly, often after only a few years.

This is why it is important to focus on the programming techniques in the
previous chapters. The device interfaces will certainly change over time, but
the approaches we use to study them and the techniques we use to program
them will remain. These approaches and techniques can be reused to design
the systems of the future and they will help those who have mastered them
to face technological changes with success.

5.6.1 Light dimmer

We need to design and build a light dimmer that can progressively control an
LED light from completely off to completely on and vice versa, through the
PWM (Pulse Width Modulation) technique.

The dimmer needs an UP and a DOWN push-button. When UP is kept
pressed, the light gets progressively brighter and when DOWN is pressed,
progressively dimmer. If both buttons are pressed simultaneously, DOWN has
priority. When the buttons are released, the level of brightness stays fixed.

5.6.1.1 The system (Version 1)

In this version (see the following figure), the system carries out the task re-
quested by the specifications using a software-only approach.
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The system is based on a “DMC8 Enhanced Microcomputer” (see Sec-
tion 2.4.1) with an added interrupt timer.

The LED has been connected to bit 0 of port OF, while two lines of port
IA are dedicated to reading the UP and DOWN buttons (when pressed, the
buttons generate a low level). The schematic also shows an 8-LED display
(connected to port OH) that we will only use for simulations to assess the
state of the LED control.

The timer interrupts the processor every 100 µS. The requested task is exe-
cuted exclusively by the interrupt handler, aside from the necessary initial-
izations, which are executed by the main program.

We were introduced to the PWM technique in an example from Section 1.5.3.3.
It makes it possible to generate programmable average voltage on one line
thanks to a succession of fixed period pulses but variable duration. The average
voltage that is generated depends on the ratio between the duration of the
high part and the whole period.

Here, the PWM period is 25.6 mS (= 256 · 100µS), that is 256 timer inter-
rupts. The pulse duration is established by the 8-bit variable VALUE. If it
has a value of zero (VALUE = 0) the LED light is off; if it has the maximum
value (VALUE = 255), the light remains on for 255 calls and is turned off by
the 256th.

The continual on/off flashing cannot be perceived by the human eye due to
retinal persistence. This makes it so that our brains do not see variations but
rather stable images whose brightness is regulated by the ratio VALUE/256.

The reading of the buttons should be confirmed by two consecutive reads
25.6 mS apart to eliminate contact bounces (see Sections 4.7.7 and 5.5.6).

The program

First we define ports USER, PLED and PVAL (read the comments in the
code), then we define three variables in the memory.

VALUE memorizes the PWM pulse duration (a number from 0 to 255), which
controls the LED light. PUSER records the previous reading of the push-
button port so the debouncing check can be done. TIME, on the other hand,
is used to assess the time that passes in the period of the PWM output.

USER EQU 00h ; IA input port: user push-buttons

PLED EQU 05h ; OF output port: LED control

PVAL EQU 07h ; OH output port: value monitor

VALUE EQU 0FC00h ; LED control value

PUSER EQU 0FC01h ; the previous state of USER port

TIME EQU 0FC02h ; time counter

We define the link to the reset and the interrupt handler. Then, we initialize
the Stack Pointer and the variables. We enable the interrupts and enter the
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infinite loop MAIN where no operation is executed. Here, no operations are
executed because everything will be done by the interrupt handler.

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h

LD (VALUE),A ; zero the LED control value

OUT (PLED),A ; and the corresponding output port

LD (PUSER),A ; no button previously pressed

LD (TIME),A ; initialize also the time counter

EI ; enable interrupts

MAIN: JP MAIN ; main loop (empty)

Every 100µS, the interrupt handler is launched. The code begins with the
usual PUSH instructions and ends with the required POPs so that we can
preserve the content of the registers used by the handler. This is done even
though the main program is empty for now, leaving space for any future
development of the code.

HINT: PUSH AF ; save the used registers

PUSH BC

As we will see further on, the TIME variable is decremented in the exit code
of the handler (that is every 100µS). This means that TIME behaves like a
cyclical 256 module down counter.

Since we need to turn the LED on for the duration defined by VALUE, we
compare VALUE with TIME at every call. If TIME ≥ VALUE we jump to
NOPULSE and put the output at ‘0’; if not, we activate the output at ‘1’.

In other words, the output goes to ‘1’ when TIME, while decrementing, reaches
VALUE. The output goes back to ‘0’ when TIME starts back again from 255.

LD A,(VALUE) ; copy the control value

LD B,A ; to register B

LD A,(TIME) ; compare the current time

CP B ; with the control value

JP NC,NOPULSE

PULSE: LD A,00000001b ; PWM = ‘1’ , if TIME < VALUE

JP WPORT

NOPULSE: LD A,00000000b ; PWM = ‘0’, if TIME ≥ VALUE

WPORT: OUT (PLED),A ; update the PWM output port
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Cyclically, every 256 calls (25.6 mS ), TIME is zeroed. So the next check verifies
if it is now time to assess the push-buttons.

LD A,(TIME) ; check if it is time

CP 0 ; to assess the push-buttons’ state

JP NZ,EXIT ; EXIT if it is not

If 25.6 mS have gone by, we check the state of the push-buttons and compare
that to the state saved the last time in PUSER. The new state is saved in this
variable to be used for the next comparison and in register C.

LD A,(PUSER) ; copy the previous port state

LD B,A ; to register B

IN A,(USER) ; read the current push-buttons’ state

CP B ; compare it with the previous state

LD (PUSER),A ; save the new state in the variable

LD C,A ; and in register C

JP NZ,EXIT ; debouncing: exit if they are different

If the values are different we assume that the cause is a contact bounce or a
transient, so we exit. If the values are equal, we validate the state that’s just
been read. Then, we go on to act on the basis of activation or push-buttons.
DOWN has priority over UP, so we test it first and if it is pressed, we do not
test the state of UP.

TESTDN: BIT 0,C ; ‘DOWN’ is pressed? (it has priority)

JP NZ,TESTUP ; jump to the other test if it is not

If DOWN is pressed (it is at ‘0’), we decrement the VALUE variable by 1
unless it is already at zero.

LD A,(VALUE) ; get the control value

CP 0 ; check if it is already at zero,

JP Z,EXIT ; if it is so do not decrement, exit

DEC A ; otherwise decrement the value

LD (VALUE),A ; and save back it in memory

JP TESTV ; jump because ‘DOWN’ has priority

If DOWN is not pressed, we check to see if UP is pressed. We go on if it is.

TESTUP: BIT 1,C ; check if ‘UP’ is pressed

JP NZ,EXIT ; jump to exit if it is not

UP is being pressed (it is at ‘0’), so we increment the VALUE variable by 1
unless it is already at the maximum value.

LD A,(VALUE) ; get the control value

CP 0FFh ; check if it is at the maximum value,

JP Z,EXIT ; if it is so do not increment, exit

INC A ; otherwise increment the value

LD (VALUE),A ; and save back it in memory

TESTV: OUT (PVAL),A ; display the new value for test
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Finally, as mentioned before, we decrement the TIME variable and then exit
the interrupt handler. The count is cyclical, so if TIME is at zero, it returns
to 255 by decrementing.

EXIT: LD A,(TIME) ; count cyclically the time

DEC A

LD (TIME),A

POP BC ; restore the used registers

POP AF

EI ; re-enable interrupts and

RET ; return to the interrupted program

The version we have now analyzed can be changed if we introduce specialized
hardware that automatically executes the generation of the PWM output, and
therefore can remove that task from those of the microprocessor.

This hardware feature is integrated into microcontrollers. In version 2, which
is discussed below, we will go further into the functionality of a specially
designed PWM converter, which we add to the microcomputer.

5.6.1.2 The system (Version 2)

In this new version, we leave it to the microcomputer to handle the function of
the push-buttons and the content of VALUE (see version 1 since we’ve taken
some of the code from it).

The following figure shows that the microcomputer no longer controls the
LED light directly. Rather, it copies the number in VALUE to the OF port,
leaving the external PWM component to generate the correct pulse sequence.
The component uses the 10 MHz processor clock.
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In this version, the timer interrupts the processor only to read the state of
the push-buttons, which it does on a regular basis. Its interval is now defined
as 25.6 mS, as per specifications.

The PWM component (see the figure at the right)
achieves the same thing through hardware as ver-
sion 1 does through software, but can do it much
faster. More importantly, the added component al-
lows us to save the processor’s computational ca-
pacity. It accepts the number VL in the input and
produces the corresponding PWM signal in the out-
put, with a period 256 times the clock period.

With a 10 MHz clock, the PWM signal period is 25.6 µS (thousands of times
faster than the software version).

The inside of the component is described in the following schematic. The 8-
bit counter “Cnt8” cyclically produces the decreasing sequence from 255 to 0,
which is brought to inputs A7..A0 of the magnitude comparator “Cp8”.

Each time the counter reaches zero, its TC (Terminal Count) output enables
loading the number VL in parallel register “PiPo8”. The output of this is
brought to the comparator’s inputs B7..B0. The comparator signals the mo-
ment when the number generated by the counter becomes equal to the number
set at input VL. When this happens, the OUT output (the PWM signal) is
brought to ‘1’; it will be brought to ‘0’ when the counter starts the count
again from 255.

The program

The assembly code derives from that of version 1.

USER EQU 00h ; IA input port: user push-buttons

PLED EQU 05h ; OF output port: LED control

VALUE EQU 0FC00h ; LED control value

PUSER EQU 0FC01h ; the previous state of USER port
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The TIME variable has been eliminated from the definitions since generating
the PWM signal is no longer the job of the software. After the jumps to the
start of the program and the interrupt handler, we initialize the Stack Pointer
and the variables. The main program is similar to that of version 1.

ORG 0000h
JP START
ORG 0038h
JP HINT
ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer
LD A,00h
LD (VALUE),A ; zero the LED control value
OUT (PLED),A ; and the corresponding output port
LD (PUSER),A ; no button previously pressed
EI ; enable interrupts

MAIN: JP MAIN ; main loop (empty)

As mentioned before, the interrupt handler only manages debouncing and
incrementing/decrementing the VALUE variable.

HINT: PUSH AF ; save the used registers
PUSH BC

LD A,(PUSER) ; copy the previous port state
LD B,A ; to register B
IN A,(USER) ; read the current push-buttons’ state
CP B ; compare it with the previous state
LD (PUSER),A ; save the new state in the variable
LD C,A ; and in register C
JP NZ,EXIT ; debouncing: exit if they are different

With regard to this functioning, the code is identical to version 1. The DOWN
push-button is checked first (priority).

TESTDN: BIT 0,C ; ‘DOWN’ is pressed? (it has priority)
JP NZ,TESTUP ; jump to the other test if it is not

If the button is pressed, the content of VALUE is decremented. If it is not
already at the minimum value, then it jumps to the SEND label.

LD A,(VALUE) ; get the control value
CP 0 ; check if it is already at zero,
JP Z,EXIT ; if it is so do not decrement, exit
DEC A ; otherwise decrement the value
LD (VALUE),A ; and save back it in memory
JP SEND ; jump because ‘DOWN’ has priority

If DOWN is not pressed, the check moves to the state of the UP push-button.
If UP is not pressed either, we exit the handler without changing VALUE.

TESTUP: BIT 1,C ; check if ‘UP’ is pressed
JP NZ,EXIT ; jump to exit if it is not
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If, however, UP is pressed, the content of VALUE is incremented unless it is
already at the maximum value. Then at the SEND label, we copy the new
content of VALUE to the PLED port and pass this number to the PWM
module.

LD A,(VALUE) ; get the control value
CP 0FFh ; check if it is at the maximum value,
JP Z,EXIT ; if it is so do not increment, exit
INC A ; otherwise increment the value
LD (VALUE),A ; and save back it in memory

SEND: OUT (PLED),A ; send the value to the PWM generator

EXIT: POP BC ; restore the used registers
POP AF
EI ; re-enable interrupts and
RET ; return to the interrupted program

5.6.1.3 Implementation on FPGA

From the functional perspective, versions 1 and 2 carry out the same opera-
tions. To implement them on an FPGA board, however, we have used version
2, which is available on the Deeds website in the online content for this section.
This allows interested readers to implement version 1 on their own. The fol-
lowing paragraphs will offer synoptic images that summarize the associations
chosen for each board32.

The DE2 board

The following figure provides a visual indication of the devices used on the
DE2 board, which is useful when we test the system.

Scheda DE0CV

The assignment of devices for the DE0-CV board is very similar to that for
the DE2.

32 For more information on the associations, see the online content for this section.
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The EP2C5 board

For the EP2C5 board, since some of the connections have to be made by hand,
it is a good idea to use the summary generated by Deeds (see the following
figure). Notice that the outputs that were just set for the simulation have not
been mapped.

The following figure shows these connections and highlights the network for
the two push-buttons to attach to the board.
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5.6.2 LED gadget

We need to design and build a small gadget that “rotates” the on/off state
of three LED lights in a cyclical sequence. The three lights have to gradually
turn on and off like a sine wave. The waves are offset from each other by 120
degrees.

The gadget has two push-buttons (UP and DOWN), that control the speed of
rotation between a high and low point (that can be perceived by the human
eye). When UP is kept pressed, the speed of rotation increases progressively;
when DOWN is kept pressed, it decreases progressively. When neither button
is being pressed, the speed remains the same. If both buttons are being pressed
at the same time, DOWN has priority over UP.

5.6.2.1 The system

Some elements of this project are reminiscent of the previous example (see
Section 5.6.1). The push-button handling is similar, so some of the code can
be reused in this project. Also, to control the LEDs’ brightness, it would be
a good idea to use the PWM component described in the previous example.

As we can see in the following figure, a “DMC8 Enhanced Microcomputer”
uses output ports OH, OG and OF to drive three PWM generators connected
to LED lights 0, 1 and 2, respectively. The generators use the same 10 MHz
processor clock.

Following the previous example, we use the two lines of the IA port to read
the UP and DOWN buttons (when pressed, they generate a low level).

We also add a timer that will interrupt the processor every 25.6 mS, and will
be used both for debouncing the reading of the buttons and to handle the
on/off rotation of the LED lights.
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The same time has been chosen as that of the previous example, but this is
not critical and could be changed (in which case the speed of rotation of the
lights would change as well).

The example from Section 4.7.3 also inspires the technique of generating out-
puts with a sinusoidal shape in this case. Here, we reuse the waveform table
in Section 4.7.3 and the method to read it. Every time the handler is called,
the read index is incremented by the size the user sets through the UP and
DOWN buttons, thus controlling the resulting oscillation frequency.

The three sine waves that control the PWM modules are phase-shifted from
each other by 120 degrees. So, the read index of the table is offset by a value
corresponding to that angle for each light (as required by the specifications).

All the required tasks are carried out exclusively by the interrupt handler.
The main program only does the necessary initializations of the ports and the
variables used.

The program

First we define ports USER, PLED0, PLED1 and PLED2, then we declare
the PHASE120 constant. This will allow us to offset the three sine waves by
120 degrees from each other (1/3 of a round angle but in 256ths).

USER EQU 00h ; IA input port: user push-buttons

PLED0 EQU 07h ; OH output port: LED0

PLED1 EQU 06h ; OG output port: LED1

PLED2 EQU 05h ; OF output port: LED2

PHASE120 EQU 85 ; 85/256 = about 120 degrees

Among the variables, we have PUSER, which memorizes the state of the
buttons (for debouncing checks). FREQ is the multiplication parameter of
the oscillation frequency, which the user increments/decrements through the
push-buttons. Finally, the ANGLE variable records the current angle of the
generation of the sine wave related to LED0 (the others use the same angle,
with the addition of the PHASE120 offset).

PUSER EQU 0FC00h ; USER port previous state

FREQ EQU 0FC01h ; frequency parameter (0..31)

ANGLE EQU 0FC02h ; current angle

Then we define the jumps to the program and the interrupt handler.

ORG 0000h

JP START

ORG 0038h ; Int. 7

JP HINT7

ORG 0100h

When the program is launched, we initialize the Stack Pointer, the variables
and the output ports. The FREQ parameter is set at an intermediate value.
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START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h ; zero the output ports

OUT (PLED0),A ; LED0, LED1 and LED2

OUT (PLED1),A

OUT (PLED2),A

LD (ANGLE),A ; zero the current angle

LD (PUSER),A ; no button previously pressed

LD A,5 ; default frequency

LD (FREQ),A

Then we enable the interrupts and enter the main loop (which is empty since
everything is done by the interrupt handler).

EI ; enable interrupts

MAIN: JP MAIN ; main loop (empty)

The interrupt handler is organized into different subprograms. The contents
of the registers in use are saved at the beginning and then restored at the end.
This allows us to leave the handler unchanged if functions are added to the
main program (which is empty now).

HINT7: PUSH AF ; save the used registers

PUSH BC

We copy the FREQ parameter to register B, and increment the ANGLE vari-
able by this value. Every time the timer is called, that is, we move forward in
reading the waveform table by using ANGLE as an index. The new value is
also saved in register C.

LD A,(FREQ) ; copy the frequency parameter

LD B,A ; to register B

LD A,(ANGLE) ; update the current angle

ADD A,B ; by adding the parameter to it

LD (ANGLE),A

LD C,A ; copy the new angle to register C, too

The angle is passed through A to the WAVEFORM function, that reads the
value table and returns the corresponding sample of the function, which is
then sent to the PWM component that drives LED0.

CALL WAVEFORM ; read the sample from the table

OUT (PLED0),A ; send it to the port of LED0

This same operation is repeated twice more for the other two lights, but with
120 degrees added to the current index (what we saved in register C).

CALL PHASE ; shift the phase of 120 degrees

CALL WAVEFORM ; read the sample from the table

OUT (PLED1),A ; send it to the port of LED1

After we send the value to the PWM component that drives LED1, we deal
with the one connected to LED2.
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CALL PHASE ; shift the phase of 120 degrees

CALL WAVEFORM ; read the sample from the table

OUT (PLED2),A ; send it to the port of LED2

Then we call UPDOWN, which assesses the state of the push-buttons and
increments (or decrements) the FREQ parameter, and we exit the handler.

CALL UPDOWN ; assess the state of push-buttons

POP BC ; restore the saved registers

POP AF

EI

RET

The PHASE subprogram increments the current angle by 120 degrees and puts
it back into register A (as we have seen, it is called before the WAVEFORM
function in relation to LED lights 1 and 2).

PHASE: LD A,C ; get the current angle from register C

ADD A,PHASE120 ; move it 120 degrees ahead

LD C,A ; save back it in C and also return it in A

RET

As mentioned before, the UPDOWN subprogram manages the buttons. It
checks their state and compares that with what is saved in PUSER. The new
state is then saved in this variable and in register C to be used in the next
comparison. If the two states are different, we assume a transitory or contact
bounce, so we exit the subprogram with the RET NZ instruction.

UPDOWN: LD A,(PUSER) ; copy the push-buttons previous state

LD B,A ; to register B

IN A,(USER) ; read the current push-buttons state

CP B ; compare it with the previous

LD (PUSER),A ; save back the new state in memory

LD C,A ; and in register C

RET NZ ; debouncing: if they are different, exit

If they are the same, the state is valid. We then go ahead and assess the DOWN
button first (it has priority). If DOWN is pressed (= ‘0’), we decrement the
FREQ parameter unless it is not already at the lowest value33, and we return
to the calling program.

TESTDN: BIT 0,C ; is the DOWN button pressed?

JP NZ,TESTUP ; (it has priority) jump if it is not

LD A,(FREQ) ; get the previous parameter value

CP 1 ; if it is already at the lowest value

RET Z ; do not decrement it and exit,

DEC A ; otherwise decrement

LD (FREQ),A ; and save back it in memory

RET

33 The lowest value must be greater than 0, otherwise the advance of the angle stops.
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If DOWN is not being pressed, we jump to TESTUP to check the UP but-
ton. If it is not being pressed either, we exit the function with the RET NZ
instruction; if it is being pressed, we increment the FREQ variable (if it is not
already at the highest value34), and we return to the calling program.

TESTUP: BIT 1,C ; is the UP button pressed?

RET NZ ; exit if it is not

LD A,(FREQ) ; get the previous parameter value

CP 31 ; if it is already at the highest value

RET Z ; do not increment it and exit,

INC A ; otherwise increment

LD (FREQ),A ; and save back it in memory

RET

As mentioned before, the WAVEFORM function provides the value of the sine
in function of the angle that we pass in the accumulator. The function uses
the SINTAB table, which contains the values of the positive half cycle of the
sine wave. The negative values are retrieved from the positive ones by two’s
complement. This is almost identical to what is used in the programming ex-
ample in Section 4.7.3). Therefore, we’ll bypass any explanation of the details
on how it functions. The only difference is that the returned values are offset
into the positive range (0..254) and constant +127 is added.

WAVEFORM: PUSH HL ; save register HL and BC
PUSH BC
LD C,A ; save bit 7 of the angle in C, and mask
AND 01111111B ; it to avoid readings outside the table

LD HL,SINTAB ; get the base address of the table
ADD A,L ; add the index to it
LD L,A ; to obtain the address of the location
JP NC,NoCarry ; of interest in register HL
INC H

NoCarry: LD A,(HL) ; get the value

BIT 7,C ; check if we are in second half wave
JP Z,Positive ; if not, the value is positive

Negative: NEG ; otherwise invert the sign of the value
Positive: ADD A,127 ; move the samples in the range 0..254

POP BC ; restore registers BC and HL
POP HL
RET

The SINTAB table is defined in the ROM and has been calculated previously.
It is identical to the one used in the example cited above. For convenience,
part of it is re-printed here.

SINTAB: DB 000 ; x = 0 (0 degrees)
DB 003 ; x = 1
DB 006 ; x = 2 (cont.)

34 The highest value was determined experimentally and can be changed.



492 5 Microprocessor systems on FPGA

... omissis ...
DB 088 ; x = 31
DB 090 ; x = 32 (45 degrees)
DB 092 ; x = 33

... omissis ...
DB 127 ; x = 63
DB 127 ; x = 64 (90 degrees)
DB 127 ; x = 65

... omissis ...
DB 092 ; x = 95
DB 090 ; x = 96 (135 degrees)
DB 088 ; x = 97

... omissis ...
DB 006 ; x = 126
DB 003 ; x = 127
DB 000 ; x = 128 (180 degrees, not used)

5.6.2.2 Implementation on FPGA

The following sections will show images that summarize the connections cho-
sen for each board35, which are useful for testing the system.

The DE2 board

The following figure shows the choice of devices for the DE2 board.

The DE0CV board

The assignment of devices for the DE0-CV board is very similar to that set
for the DE2.

35 For more information on the associations, see the online content for this section.
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The EP2C5 board

The connections on the EP2C5 board require two external push-buttons to
be connected. Among the resources on the board, we use the three red LED
lights and the push-button (for reset). In any case, it should be useful to have
access to the Deeds summary (see the following figure).

Below is a photograph of the board with the physical connections to make for
the two push-buttons superimposed on it. Pay attention to the connections of
the 10 KΩ pull-up resistors (highlighted in red and orange).
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5.6.3 Special sound effects

We want to design and build a sound effects gener-
ator that imitates the typical sounds of 1980s video
games. We will use a small piezoelectric speaker
(called a “buzzer”, see the photo at the right) as an
acoustic transducer. This speaker has the benefit of
being able to directly connect to the logic circuit
without the need of an amplifier.

Piezoelectric materials are able to deform when an electrical field is applied. If
the electrical field varies over time, we will get a transformation into acoustic
vibrations.

5.6.3.1 The system

The generator requires a push-button (ON) and a switch (FAST). The sound
is generated when we press the ON button. FAST allows us to select the type
of effect we want (fast or slow pace).

The following figure shows the system, which uses the “DMC8 Enhanced
Microcomputer” component with an added timer set to interrupt the processor
every 100µS.

Through the IA port, we read the state of ON and FAST (we will not do
debouncing checks here since they are not required by the application).
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The piezoelectric speaker is directly connected to the SPEAKER line (bit 0 of
output port OF). Since the audio signal sent by the transducer is generated by
a logic output, it will always have exactly two levels. To generate the variety
of sounds that we expect, we need to work on the oscillation frequency of the
logic levels and above all, on the variation of the frequency itself, i.e., on its
“modulation”.

The main program acquires the inputs and translates them into two variables:
PLAY and TMAX (used by the interrupt). PLAY enables sound generation
and is obtained by the state of the ON button. TMAX, however, depends on
the FAST switch. It contains the value used to re-initialize the time count
that the frequency variation (fast or slow) and the type of effect generated
depends on, as we shall see.

The interrupt handler primarily inverts the level of the SPEAKER output at
the right time. To do this, it decrements a counter every time it is called and
executes the inversion each time it zeroes. The count is therefore re-initialized
with the value contained in the PERIOD variable.

If PERIOD contained a constant, the frequency of the output would be fixed.
However, PERIOD is regularly incremented so it gradually lowers the fre-
quency of the signal generated. This increment is cyclical (once it gets to the
highest value, it restarts at the lowest).

This way, the frequency is modulated by a signal with a “descending sawtooth”
trend. How quickly the frequency is decremented is in turn controlled by the
TMAX variable, which as we remember, depends on the FAST switch.

Therefore, we get a fast or slow decline of the frequency generated that pro-
duces two types of sounds that are very different from each other from a
psychoacoustic perspective36. The following timing diagram shows the rate of
the signal in the output, which we obtain by setting FAST to ‘1’.

The program

We define the addresses of ports PSEL and PSOUND, and then the variables.

PSEL EQU 00h ; IA input port: user commands
PSOUND EQU 05h ; OF output port: audio output

The COUNT variable assesses the time that elapses between two output
transitions. PERIOD, TMAX and PLAY have already been discussed. The
SOUND variable is the software copy of the PSOUND output port. It records
the last value written on the port in order to invert the value of the output
line when requested.

36 Obviously, we suggest creating the system and listening to the result!
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TIME assesses the time elapsed between two variations of PERIOD and so
allows us to modulate the frequency, making the two different modulations
(fast or slow) possible.

COUNT EQU 0FC00h ; time counter (between two transitions)

PERIOD EQU 0FC01h ; requested time between two transitions

SOUND EQU 0FC02h ; software copy of the output

TIME EQU 0FC03h ; time counter (between two variations)

TMAX EQU 0FC04h ; requested time between two variations

PLAY EQU 0FC06h ; sound generation flag (ON/OFF)

The following constants determine the final result of the sound effect and can
be changed as desired, even experimentally.

PHIGH EQU 50 ; maximum time between two transitions

PLOW EQU 7 ; minimum time between two transitions

TMLONG EQU 255 ; time between variations (long and short)

TMSHORT EQU 25

We define the jumps to the main program and the interrupt handler.

ORG 0000h
JP START
ORG 0038h
JP HINT
ORG 0100h

After the initialization of the Stack Pointer, the main program calls the
CLEAR subprogram, which defines the default values of the variables and
the output port. After that, we enable the interrupts.

START: LD SP,0FFFFh ; initialize the Stack Pointer

CALL CLEAR ; and all the variables and the output port

EI ; enable interrupts

The main program translates the state of the push-button and the switch
into the proper values of variables PLAY and TMAX, as mentioned before.
If the content of PLAY is not zero, the sound is generated. The FAST switch
determines if the TMSHORT or the TMLONG constant is loaded in TMAX
(corresponding to the quick or slow modulation, respectively).

MAIN: IN A,(PSEL) ; read the user commands

LD B,A ; save their state

CPL ; invert all the bits

AND 00000010b ; if the push-button is pressed, bit 1 = ‘1’

LD (PLAY),A ; save the ‘ON’ command flag

BIT 0,B ; assess the line ‘FAST’ and assign

LD A,TMLONG ; the update time of the time between

JP Z,LONG ; two transitions (long or short time)

LD A,TMSHORT

LONG: LD (TMAX),A

JP MAIN
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The subprogram below, CLEAR, initializes all the default values of the vari-
ables and the output port (for more on this, read the comments in the assembly
code). As we have seen, it is called at the start of the main program, but the
interrupt handler uses it as well, as we will see further on.

CLEAR: LD A,PHIGH ; this subprogram initialize:

LD (PERIOD),A ; 1) the time between two transitions

LD (COUNT),A ; 2) and its counter

LD A,00h

LD (PLAY),A ; 3) zero the play enable

LD (SOUND),A ; 4) zero the output software copy

OUT (PSOUND),A ; and the output port

LD A,TMLONG ; define a default

LD (TIME),A ; to the time count

RET

The interrupt handler is launched by the timer every 100 µS. The only reg-
isters used in it are the accumulator and the flags, so we save them with a
PUSH AF instruction. On exit, we restore its original value with the corre-
sponding POP AF.

HINT: PUSH AF ; save the used register

We immediately check if the generation is enabled. If it isn’t, we exit with-
out generating anything, but we re-initialize the variables in play by calling
CLEAR (even though it is called all the time, this poses no problem).

LD A,(PLAY) ; is the generation enabled?

CP 0

JP NZ,SING ; jump if it is, otherwise

CALL CLEAR ; re-initialize all the variables and exit

JP EXIT

If generation is enabled, we jump to the SING label where we count the time
that passed since the last inversion to check if it is time to invert the output
again. If the count is not at zero yet, we jump to the UPDATE label.

SING: LD A,(COUNT) ; assess the time passed

DEC A ; since the last output inversion

LD (COUNT),A

JP NZ,UPDATE ; jump if time has not elapsed

If the time count is at zero, we make it start again, but we take the new
duration from the PERIOD variable (which may have been changed).

LD A,(PERIOD) ; re-initialize the time counter

LD (COUNT),A

We do the level transition by inverting the bit in position 0 of the SOUND
variable, which is then copied to output port PSOUND.
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LD A,(SOUND) ; invert the bit 0 of the output

XOR 00000001b

LD (SOUND),A ; save back the new state in memory

OUT (PSOUND),A ; and copy it to the output port

As explained at the beginning, if PERIOD were a constant, the frequency in
the output would not change. At the next UPDATE label, however, the new
value of PERIOD is calculated (if the time has come to do it).

We decrement the TIME variable and, if it is not at 0, we exit the handler
without updating PERIOD.

UPDATE: LD A,(TIME) ; during the generation, assess

DEC A ; if it is time to change the duration

LD (TIME),A ; of the next half-period

JP NZ,EXIT ; exit if it is not

If TIME is zeroed, we re-initialize it with time TMAX.

LD A,(TMAX) ; otherwise re-initialize the counter

LD (TIME),A ; of the time to change the period

So, if TMAX contains the constant TMLONG, PERIOD will be changed less
often, giving us the “slow” sound. If TMAX contains the constant TMSHORT,
PERIOD will be changed more often, giving us the “fast” sound.

The following instructions produce a progressive increment in the PERIOD
variable until it reaches its maximum: PHIGH. When it gets to PHIGH, PE-
RIOD is re-initialized to the minimum value: PLOW.

LD A,(PERIOD) ; assess the duration of the half-period

CP PHIGH ; check if it has reached the maximum

JP NZ,INCP ; jump if it is not

LD A,PLOW ; otherwise restart the count from the

LD (PERIOD),A ; minimum half-period

JP EXIT

INCP: INC A ; increment the half-period by one

LD (PERIOD),A ; save back the new value

Finally, we exit the handler and return to the interrupted program.

EXIT: POP AF ; restore the saved registers

EI ; re-enable interrupts

RET ; return to the interrupted program

5.6.3.2 Implementation on FPGA

The following sections have figures that summarize the connections chosen for
each board37 used to test the system.

37 For more information on the associations, see the online content for this section.
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The DE2 board

The following figure shows the devices chosen for the DE2 board.

The DE0CV board

The assignment of devices for the DE0-CV board is very similar to that set
for the DE2.
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The EP2C5 board

The connections on the EP2C5 board require the connection of an external
push-button (ON) and switch (FAST).
We will use the push-button already on the board for reset. The table below
shows the summary of the connections as generated by Deeds.

Below is a photograph of the board with the physical connections to make for
the ON button and the FAST switch. The connections of the 10 KΩ pull up
resistors are highlighted in red and orange.
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5.6.4 Music box

We need to build a music box that can cyclically play a short tune. The
traditional music box is mechanical, box-shaped and decorated, and plays
when the cover is lifted.

In our prototype, we will use the system reset button to simulate this behavior.
We will make it work in the opposite sense from the usual. The reset will then
be active with the push-button at rest. For us, “lift the cover” means pressing
the reset button, and for this purpose, ’reset’ should be called ’PLAY’.

For the transducer, we can use the same piezoelectric device described in
Section 5.6.3. Then we can connect it directly to the circuit with no need for
an amplifier.

A horn loudspeaker like the one photographed at the
left is a potential alternative. It functions along the
same principle.

Like most piezoelectric acoustic transducers, it can be
directly connected to the logic circuit.

It is affordable, easy to repair, and produces a decidedly
higher volume and better sound quality.

Among all the tunes that could be played, we chose a part of Bourrée in E
minor (BWV 996) from the great composer J.S.Bach38. Below is the musical
notation for the first 8 measures, which will repeat cyclically.

To make it possible to set some variations to the sound, we have added three
switches in our system. Two of the switches (OCT1 and OCT0) allow us to
“transpose” the execution an “octave”.

From a Physics perspective, this means that the note’s frequency fN is mul-
tiplied by a certain factor in function of the setting of OCT1 and OCT0 (see
the table below).

OCT1, OCT0 Frequency Transposition

0 0 fN None
0 1 fN · 2 One octave above
1 0 fN · 4 Two octaves above
1 1 fN · 8 Three octaves above

38 Johann Sebastian Bach (1685-1750) was a German composer and musician of the
Baroque period. Originally composed for the lute, this song was covered in 1969
by Jethro Tull on the album “Stand Up”.
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The third switch (GLIDE) allows us to give a special touch to the tune by
adding a “glide” effect between the notes. The glide between two consecutive
notes consists in progressively raising or lowering the frequency from the first
note to the second39.

5.6.4.1 The system

The figure below shows the system, which uses a “DMC8 Enhanced Micro-
computer” with an added timer (that interrupts every 50 µS) for the OCT0,
OCT1 and GLIDE switches. The sound is generated on the output WAVE
when the PLAY button is pressed, as described before.

Generating notes

Before examining the assembly code, it is useful to describe the principle of
operation behind the generation of notes. We’ll approach the subject in steps,
ignoring for the moment the specifications for the glide and transposing the
octave.

Generating a note in our music box means producing a square wave signal,
i.e., a two-level periodic wave on the WAVE output line.

39 This can be done with the voice or various types of instruments (synthesizers, for
example).
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The notes are differentiated on the basis of their “pitch”. In physical terms
this means we simply need to control their frequency of oscillation40.

Here, it makes sense to assess the half-period of the signal rather than the
frequency because at the end of the half-period, we will have to invert the
signal logical level on the output. We use a counter (COUNT), which is incre-
mented by one every time the timer is called. When COUNT is equal to the
half-period set in the CPERIOD variable, we invert the WAVE output and
go back to counting from the top (see the following figure).

We should then define a table of constants, one for every note to generate
(FTABLE). For a certain note, we consult the table and load the value of the
desired half-period in the CPERIOD variable. The duration of the half-period
TH corresponding to the note’s frequency fN is:

TH =
1

2 · fN
Keeping in mind that here, time is marked by the interrupts (that come every
∆T = 50µS), the number NH to insert in the table for every note, is calculated
by the following expression:

NH =
1

2 ·∆T · fN
Then we round off the result to the nearest integer number. To get a better
approximation of the frequency generation, and thus an optimal pitch, we
clearly need to reduce ∆T , but for our music box, the timer’s 50 µS are enough
for an acceptable sound.

Reading the music

The sequence of notes to generate is read on the “musical score”, which is just
another table (MSCORE). MSCORE shows the codes of the notes that have
to be executed one after the other.

40 The frequency of notes is not universal but depends on the culture, the musical
system and the historical period it is developed in. Just to cite a couple examples,
within Europe, the Ancient Greeks tuned their instruments differently from those
in the Baroque period, who in turn tuned them differently from the musicians of
today. In modern “equal temperament” (introduced after the Baroque period),
note frequencies are calculated starting from a reference point (the “central A
note”, generally defined as 440Hz ) and deriving the others by multiplying by a
factor of 12

√
2 (about 1.059). For example, the frequency of Bb, the note after A

is (440 · 12
√

2) ' 466.164. Moving on to the note-by-note calculation, we do 12
multiplications and then get the frequency of A at the octave above, which is

880Hz, simply double of the A at the beginning, since( 12
√

2)
12

= 2.
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The codes to insert in the table were chosen according to the numbering
defined by the MIDI standard41, which identifies notes with numbers from 1
to 127. The lowest note we generate is fourth octave C, which corresponds to
MIDI 60. Then, to index the FTABLE half-period table as of 0 (whose first
line corresponds to our note), we need to subtract 60 from the code that we
get by reading MSCORE.

The MSCORE table is read in a timed fashion; the new note is read when
the previous one ’s time elapses. The notes are divided into “eighths” i.e., one
eighth of the time of a whole “measure”. Let’s look below at the figure of a
part of the score. We will insert two identical codes (= 71) one after the other
for note B, which must last for a quarter measure, then the codes for the notes
A (= 69), G (= 67), and then two identical codes for F# (= 66), for a quarter
measure, and so on.

In the program, a one eighth note duration is assessed by counting the inter-
rupts and is defined by the NOTETIME constant (the larger it is, the slower
the execution and vice versa). When a note must last more than an eighth on
the score, multiple identical codes are inserted consecutively in the table.

Octave transposition

Now let’s add the specification for octave transposition. If the time interval
between one interrupt and another were a lot shorter, we would be able to
afford to extend the table of half-periods FTABLE.

Here though, if we included three higher octaves (36 notes), we would be forced
to insert the values of the progressively smaller half-periods, which become
ever more approximated in proportion. This would cause a drastic decline in
pitch quality because the resulting frequencies would be too discordant from
the nominal frequencies.

An acceptable solution from a musical perspective consists in a multiplication
parameter (Oct = 1, 2, 4 or 8) for the expression:

NH = Oct ·
1

2 ·∆T · fN
,

so as to obtain higher frequencies with the same NH in the denominator:

fN = Oct ·
1

2 ·∆T ·NH
.

We can obtain this result by changing the way in which we calculate the
half-period.

41 Musical Instrument Digital Interface, https://www.midi.org/

https://www.midi.org/
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Each time the interrupt handler is called, we continue to increment the counter
(COUNT), but by the amount dictated by the parameter Oct (OCTAVE, in
the program). When COUNT is greater than or equal to the half-period set
in the CPERIOD variable, we invert the WAVE output and instead of zeroing
COUNT, we make it equal to the difference (COUNT - CPERIOD).

This means we bring COUNT back to zero after (CPERIOD · Oct) interrupt
calls. This gives us a half-period only more or less what we want but that
manages the pitch acceptably for our application.

The glide

Finally, we now add the glide between two consecutive notes. We need to take
the CPERIOD variable (the current half-period used to calculate transition
times) and place another PERIOD variable next to it, the “desired” half-
period, that is, that of the next note.

Every time we take a new note from the MSCORE table, the corresponding
half-period is calculated in PERIOD. If glide is enabled, rather than assigning
the content of PERIOD directly to CPERIOD, we gradually increment (or
decrement) CPERIOD in a time-controlled way until it reaches the value set
in PERIOD. The resulting effect is that the frequency gradually shifts from
one note to the next. As we will see, we can change the timing of this shift by
changing the value of a constant.

The program

In the beginning, we define the input and output ports (PCTRL and PWAVE).

PCTRL EQU 00h ; IA input port: control inputs
PWAVE EQU 05h ; OF output port: square wave output

There are many variables so it is better to discuss them where they are used.

COUNT EQU 0FC00h ; half-period time counter
PERIOD EQU 0FC01h ; nominal duration of the half-period
CPERIOD EQU 0FC02h ; current duration of the half-period
WAVE EQU 0FC03h ; output’s state
SINDEX EQU 0FC04h ; index in the musical score
CNOTE EQU 0FC05h ; current note in execution
OCTAVE EQU 0FC06h ; octave transposition
TIME EQU 0FC07h ; time count (16 bit)
GLITIME EQU 0FC09h ; glide duration counter
GLIDEON EQU 0FC0Ah ; glide mode On/Off flag

The NOTETIME constant determines the duration of an eighth note. The
GLIDESET constant defines the duration of the glide between the notes (the
shorter it is the less it is perceived).

NOTETIME EQU 3700 ; duration of an eighth note
GLIDESET EQU 90 ; duration of the glide



506 5 Microprocessor systems on FPGA

These constants can be changed as desired. What follow are the definitions of
the jumps to the start of the program and the interrupt handler.

ORG 0000h

JP START

ORG 0038h

JP HINT

We allocate the FTABLE table in the ROM area that comes before the main
program. As explained before, FTABLE contains the durations of the half-
periods corresponding to each note in terms of units of time (50 µS, the in-
terval defined by the timer).

The comments of each line have the names of the notes, their nominal fre-
quencies and their MIDI codes.

ORG 00C0h ; Note frequency table

FTABLE: DB 153 ; C4 = 261.626 Hz (MIDI: 60)

DB 144 ; C#4 = 277.183 Hz (MIDI: 61)

DB 136 ; D4 = 293.665 Hz (MIDI: 62)

DB 129 ; Eb4 = 311.127 Hz (MIDI: 63)

DB 121 ; E4 = 329.628 Hz (MIDI: 64)

DB 115 ; F4 = 349.228 Hz (MIDI: 65)

DB 108 ; F#4 = 369.994 Hz (MIDI: 66)

DB 102 ; G4 = 391.995 Hz (MIDI: 67)

DB 96 ; Ab4 = 415.305 Hz (MIDI: 68)

DB 91 ; A4 = 440.000 Hz (MIDI: 69)

DB 86 ; Bb4 = 466.164 Hz (MIDI: 70)

DB 81 ; B4 = 493.883 Hz (MIDI: 71)

DB 76 ; C5 = 523.251 Hz (MIDI: 72)

DB 72 ; C#5 = 554.365 Hz (MIDI: 73)

DB 68 ; D5 = 587.330 Hz (MIDI: 74)

DB 64 ; Eb5 = 622.254 Hz (MIDI: 75)

DB 61 ; E5 = 659.255 Hz (MIDI: 76)

DB 57 ; F5 = 698.457 Hz (MIDI: 77)

DB 54 ; F#5 = 739.989 Hz (MIDI: 78)

DB 51 ; G5 = 783.991 Hz (MIDI: 79)

DB 48 ; Ab5 = 830.609 Hz (MIDI: 80)

DB 91 ; A5 = 880.000 Hz (MIDI: 81)

DB 43 ; Bb5 = 932.328 Hz (MIDI: 82)

DB 40 ; B5 = 987.767 Hz (MIDI: 83)

DB 38 ; C6 =1046.502 Hz (MIDI: 84)

First of all, the main program initializes the Stack Pointer.

ORG 0100h

START: LD SP,0FFFFh ; initialize the Stack Pointer



5.6 Project examples 507

Then it reads the first note found in the “score” (the MSCORE table, which
we see at the end of the code), sets the execution and immediately after, calls
the GPERIOD subprogram to take the corresponding half-period from the
FTABLE table.

LD A,(MSCORE) ; get the first MIDI note from the score

LD (CNOTE),A ; and save it as current note

CALL GPERIOD ; get the corresponding half-period

LD (CPERIOD),A ; copy it to the current duration variable

LD A,00h ; zero the counter of the half-period

LD (COUNT),A

We also zero output port PWAVE, its software copy WAVE, the read index
for the notes from the MSCORE table and the octave transposition parameter
(OCTAVE).

LD (WAVE),A ; zero the wave output port

OUT (PWAVE),A

LD (SINDEX),A ; zero the read index for the notes and

LD (OCTAVE),A ; the octave transposition parameter

Before entering the main loop, we initialize the parameters for the glide and
the metronome. After, we enable interrupts.

LD A,GLIDESET ; initialize the glide duration counter

LD (GLITIME),A

LD A,0 ; set glide mode OFF

LD (GLIDEON),A

LD HL,1 ; initialize the metronome glide counter

LD (TIME),HL

EI ; enable interrupts

The main loop continually acquires the switches (this type of application
doesn’t necessarily require a debouncing check so it has been omitted for
simplicity’s sake).

Based on the state of the switches, it first defines the GLIDEON variable,
which determines if the notes have been generated with or without a glide
effect.

MAIN: IN A,(PCTRL) ; read the input switches’ state

LD C,A ; and copy it to register C

AND 00000100b ; assess the glide control: glide mode

LD (GLIDEON),A ; is ON if GLIDEON is not zero

Then, based on the configuration of the OCT1 and OCT0 switches, we load
1, 2, 4 or 8 in the OCTAVE variable.

LD A,C ; get the OCT1 and OCT0 bits from C,

AND 00000011b ; encode them in a number ranging

INC A ; from 1 to 4 and copy it to register B

LD B,A ; (cont.)
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LD A,00000001b ; calculate (as power of 2) the octave

POWER: DEC B ; transposition parameter

JP Z,SAVE ; when finished, jump and save it

SLA A ; multiply register A by two as many

JP POWER ; times as specified by register B

SAVE: LD (OCTAVE),A ; save the octave transposition parameter

JP MAIN ; and repeat the main loop

The interrupt handler is called every 50 µS. As mentioned before, the shortest
time possible was chosen to get the best approximation of the frequencies
generated. We can verify, even with time simulation, that all the possible
handler sequences are executed correctly within the time frame of 50 µS.

In order to understand the algorithms in the interrupt handler, it is important
to note that it does different tasks all with the goal of generating sound.

These tasks produce results that are stored in variables to be then read and
used by other modules, not necessarily written in subsequent order. In some
cases, the results are not immediately used by a module executed right in the
same interrupt call, but rather they are destined for a module that will be
executed during the next interrupt.

At the start of the handler, we save the contents of the registers in use.

HINT: PUSH AF ; save the registers in use

PUSH HL

PUSH BC

In the first part of the code, we check if a glide between notes is desired
or not. Then we choose either the NOGLIDE, or the GLIDE subprogram.
The NOGLIDE subprogram immediately assigns the half-period required by
the current note for the generator. GLIDE, on the other hand, calculates the
progressive approach from the current half-period to the half-period of the
required note, little by little (as we will see further on).

LD A,(GLIDEON) ; check if glide is enabled

OR A

CALL Z,NOGLIDE ; OFF: assign directly the half-period

CALL NZ,GLIDE ; ON : approach the desired half-period

The function IsBEAT tells us if it is time to take the next note from the score
(it assesses if the time of one eighth note has elapsed, but the details will be
addressed in the following pages).

CALL IsBEAT ; is it time to read a new note?

JP NZ,NONEW ; jump if it is not, otherwise

CALL NEXTNOTE ; get the next note code and convert

CALL GPERIOD ; it in the corresponding half-period

If it is time, we read the next note on the score and retrieve the corresponding
half-period (this is an example of parameters that are not used immediately
but will be used at the next call).
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Whether a new note is taken or not, we check if the current code is a “rest
note” (00h). If it is, we exit the handler because we do not generate transitions
on the output during a rest note.

NONEW: LD A,(CNOTE) ; check the current note code,

OR A ; if we are during a rest note, exit

JP Z,EXIT

If it is not a rest note, we continue; we call the subprogram that generates the
transitions of the output square wave (described a bit further on).

CALL GENERATE ; call the output transition generator

Then the handler restores the content of the registers, re-enables the interrupts
and goes back to the interrupted program.

EXIT: POP BC ; restore the saved registers

POP HL

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program

Now let’s look at the subprograms that the interrupt handler calls.

The IsBEAT function counts time and if an eighth note has gone by, it gives
authorization to take the next note to the calling program.

Specifically, it decrements the TIME variable (every 50 µS), and exits if the
count is not zeroed. If it is zeroed, it reloads the NOTETIME constant42 in
the TIME counter and exits with the zero flag active.

IsBEAT: LD HL,(TIME) ; assess the increment of time

DEC HL ; (by steps of 50 microseconds)

LD (TIME),HL

LD A,H

OR L ; exit if it’s not time to read the next note

RET NZ ; on the score, otherwise

LD HL,NOTETIME ; the time of an eight note has passed,

LD (TIME),HL ; re-initialize the time counter

RET ; and return to the calling program

The NOGLIDE subprogram is called when we need to execute notes without
glides. It simply copies the PERIOD half-period, (which had been retrieved
before from the FTABLE table), directly to the CPERIOD variable, which
will be used by the generator.

NOGLIDE: LD A,(PERIOD) ; use directly the requested

LD (CPERIOD),A ; half-period value, without gliding

RET

42 To execute the piece more quickly we need to reduce the NOTETIME constant.
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The GLIDE subprogram produces the glide by gradually moving the content of
CPERIOD closer and closer to the desired half-period contained in PERIOD.
As we have seen before, the note frequency will take a certain amount of time
to move from one to the next so that the transition is clearly audible.

When we enter GLIDE, we immediately decrement the GLITIME (‘glide
time’) variable, but if it is not zeroed yet, we simply leave the function.

GLIDE: LD A,(GLITIME) ; assess the glide time

DEC A ; decrementing the variable GLITIME

LD (GLITIME),A ; exit if it is not time to modify the

RET NZ ; half-period of the generated note

If it has been zeroed, we refresh the count by loading the GLIDESET constant
in the GLITIME43 variable.

LD A,GLIDESET ; otherwise, re-initialize GLITIME

LD (GLITIME),A ; to be able to restart the count

We check to see if the contents of the two variables are already equal, and if
they are, we exit (the goal has been reached).

LD A,(CPERIOD) ; copy the current half-period in B

LD B,A

LD A,(PERIOD) ; get the requested half-period in A

CP B ; compare the two values

RET Z ; exit if they have become equal

Otherwise, the current half-period CPERIOD is still different from the re-
quested PERIOD. So, we decide to increment or decrement CPERIOD by
one based on the Carry flag in order to move the value closer to PERIOD.

LD A,B ; move CPERIOD in A

JP C,GLIDEDN ; jump if PERIOD < CPERIOD

GLIDEUP: INC A ; otherwise, increment CPERIOD

LD (CPERIOD),A

RET

GLIDEDN: DEC A ; decrement CPERIOD

LD (CPERIOD),A

RET

Now, let’s examine the code of GENERATE, which inverts the output when
it is time to do so. It increments COUNT by the amount in the OCTAVE
variable (remember that it can contain 1, 2, 4 or 8). If the number in COUNT
is not larger than CPERIOD, it is not time to invert the output yet.

GENERATE: LD A,(CPERIOD) ; get the current note half-period
LD B,A ; and copy it to B
LD A,(COUNT) ; then, copy the time counter to C
LD C,A (segue)

43 We can change the entity of the glide by redefining the GLIDESET constant.
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LD A,(OCTAVE) ; get the octave transposition (1, 2, 4, 8)

ADD A,C ; add it to the time counter:

LD C,A ; COUNT ← COUNT + OCTAVE

CP B ; the count is larger than CPERIOD?

JP NC,INVERT ; jump to INVERT if it is, otherwise

LD (COUNT),A ; save back the COUNT variable

RET ; and leave the function

If COUNT is larger than CPERIOD, we jump to INVERT, complement the
state of the output and save a copy of that in the WAVE variable. Before that,
however, we refresh the COUNT variable by subtracting CPERIOD from it
(as described before).

INVERT: SUB B ; re-initialize the time counter to

LD (COUNT),A ; the difference (COUNT - CPERIOD)

LD A,(WAVE) ; do a transition on the output WAVE,

XOR 10000000b ; inverting the MSB of the software copy

OUT (PWAVE),A ; and coping the new value to the port

LD (WAVE),A ; save back the new port state

RET

Now consider the reading of the musical score, that is, the MSCORE table
(shown further on). In the MSCORE table we find:

— The codes for the note (MIDI, limited here to the interval of 60..84).
— A code for rest note (00h), which is not used in the song chosen here.
— A code for refrain (80h), which makes everything start from the top44.

The table is read by using the SINDEX index, which was zeroed at the start.
The index is added to the base address of the table. We obtain an address in
the HL register that we use to take the code of the note from the table. The
code is saved in the CNOTE variable.

NEXTNOTE: LD HL,MSCORE ; copy the address of the table in HL

LD A,(SINDEX) ; get the index of the note code to read

ADD A,L ; add it to the table base address,

LD L,A ; to obtain the address of the note code

JP NC,GETCODE

INC H ; (handle the carry, if any)

GETCODE: LD A,(HL) ; get the note code from the table

LD (CNOTE),A ; copy it to the CNOTE variable

Before incrementing the SINDEX index (in order to handle taking the next
note from the table), we check to see if we have read the code for refrain.

CP 80h ; check if it is a code for refrain

JP NZ,NEXTIND ; jump if it is not

44 This is only in our simplified project. In real musical notation, “refrain” signs
would only repeat a part of the song not everything from the top.
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If we have read a code for refrain, we have gotten to the end of the music
described by the score so we zero the index and jump back to NEXTNOTE,
then take the first note in the table and go back to the calling subprogram.

LD A,0 ; this is a refrain, zero the index
LD (SINDEX),A
JP NEXTNOTE ; and jump back to get the first code

If we have not read it, we increment the read index of the table and exit.

NEXTIND: LD A,(SINDEX) ; increment the index for the next time
INC A
LD (SINDEX),A
RET ; and exit

The last subprogram to study is GPERIOD, which translates the code of the
note into the value of the corresponding half-period. In GPERIOD, the initial
check is to confirm that the code taken is for the rest note, in which case we
exit (without producing a value for the half-period).

GPERIOD: LD A,(CNOTE) ; get the current code and
OR A ; check if it is a code for rest note
RET Z ; exit if it is (no matter the return value)

Then we check just to be sure that the code of the note is within the interval
that we handle and if it is not, we exit.

SUB 60 ; calculate the index from the MIDI code
RET C ; exit if the index is < 0 (not valid)
CP 25 ; (A ≥ 25)? Cy = 1 if the index is < 25
RET NC ; exit if ≥ 25 (not valid)

We continue if the index is valid (00..24). Then we add it to the base address
of the table, to take the desired half-period.

LD HL,FTABLE ; get the table base address in HL
ADD A,L ; add the index to that address
LD L,A
LD A,(HL) ; get the period
LD (PERIOD),A
RET

The following is the entire musical score for the song, which has been tran-
scribed note by note in the MSCORE table.

MSCORE: DB 76 ; E5 (measure 0)
DB 78 ; F#5

DB 79 ; G5 (measure 1)
DB 79 ; G5
DB 78 ; F#5
DB 76 ; E5
DB 75 ; Eb5
DB 75 ; Eb5
DB 76 ; E5
DB 78 ; F#5
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DB 71 ; B4 (measure 2)
DB 71 ; B4
DB 73 ; C#5
DB 75 ; Eb5
DB 76 ; E5
DB 76 ; E5
DB 74 ; D5
DB 72 ; C5

DB 71 ; B4 (measure 3)
DB 71 ; B4
DB 69 ; A4
DB 67 ; G4
DB 66 ; F#4
DB 66 ; F#4
DB 67 ; G4
DB 69 ; A4

DB 71 ; B4 (measure 4)
DB 69 ; A4
DB 67 ; G4
DB 66 ; F#4
DB 64 ; E4
DB 64 ; E4
DB 76 ; E5
DB 78 ; F#5

DB 79 ; G5 (measure 5)
DB 79 ; G5
DB 78 ; F#5
DB 76 ; E5
DB 75 ; Eb5
DB 75 ; Eb5
DB 76 ; E5
DB 78 ; F#5

DB 71 ; B4 (measure 6)
DB 71 ; B4
DB 73 ; C#5
DB 75 ; Eb5
DB 76 ; E5
DB 76 ; E5
DB 74 ; D5
DB 72 ; C5

DB 71 ; B4 (measure 7)
DB 71 ; B4
DB 69 ; A4
DB 67 ; G4
DB 66 ; F#4
DB 66 ; F#4
DB 66 ; F#4
DB 69 ; A4
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DB 67 ; G4 (measure 8)
DB 67 ; G4
DB 67 ; G4
DB 67 ; G4
DB 67 ; G4
DB 67 ; G4

DB 80h ; code for refrain

Note: the last two notes (F#5 and G5) are not in the table because they are
already at the beginning of the song and will be played when we go back to
the top.

5.6.4.2 Implementation on FPGA

The following sections have figures that summarize the connections chosen for
each board45, used to test the system.

The DE2 board

The following figure shows the devices chosen for the DE2 board.

45 For more information on the associations, see the online content for this section.
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The DE0CV board

The assignment of devices for the DE0-CV board is very similar to that set
for the DE2.

The EP2C5 board

The connections on the EP2C5 board require the external connection of three
switches (OCT1, OCT0 and GLIDE). For the PLAY command, however, we
will use the one push-button on the board. The table below shows the sum-
mary of the connections as generated by Deeds.

Below is a photograph of the board with the physical connections to make for
switches OCT1, OCT0 and GLIDE. The connections of the three 10 KΩ pull
up resistors are highlighted in red and orange.
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5.6.5 Stepper motor control

In this example, we will build a microprocessor-based system that continu-
ously rotates a “stepper motor”. After a brief introduction to stepper motor
operations, we will analyze the system and implement it on FPGA.

The stepper motor

Here, we discuss the 28BYJ-48 component46, shown in the figure on the right.
It is easy to find and economical.

Stepper motors are electro-mechanical compo-
nents that can execute small rotations of a pre-
defined angle on command.

To move the motor we need electronic cir-
cuits whose operating principle goes beyond
the scope of this book. We will use a small
electronic “power” driver board as an interface
between the motor and the output logic lines
of the FPGA board we will use.

46
https://datasheetspdf.com/pdf-file/1006817/Kiatronics/28BYJ-48/1
https://lastminuteengineers.com/28byj48-stepper-motor-arduino-tutorial

https://datasheetspdf.com/pdf-file/1006817/Kiatronics/28BYJ-48/1
https://lastminuteengineers.com/28byj48-stepper-motor-arduino-tutorial
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On the right, we have a photo of the electronic
interface circuit that we will use.

Its job is to allow for driving the lines of the
motor, given that they require higher current
and tension than those available on the typical
outputs of an FPGA component.

Further on, the instructions to connect this board between the chosen FPGA
and the lines of the motor will be explained.

The operating principle

On these pages, we will show an abstract model of the motor and focus on
the logical and operative aspects. The physical and electro-mechanical aspects
will not be dealt with here. We use an arrow to represent the position of the
angle of the motor shaft at a given time (see the following figure).

Initial state First rotation Second rotation

In the initial state the arrow is pointing up. There is an electromagnet to
the right of the arrow47 (pink circle) that attracts the arrow when activated.
Once the electromagnet is activated, a certain amount of time elapses and the
arrow completes the rotation of a certain angle α, whose value depends on the
physical parameters of the motor (in the figure, it is represented at 45° just
for clarity’s sake). Until the electromagnet is active, the arrow will continue
to point at it.

Now we activate another electromagnet (yellow circle in the figure) and make
sure to deactivate the first one. As before, we will make the motor rotate again
by attracting the arrow, giving us a total rotation of 2 · α.

If we continue to activate the electromagnets along the circumference we can
execute a full stepwise rotation of the motor. We proceed as before: each time,
we activate the next electromagnet and deactivate the previous one. Clearly,
if we invert the activation order of the electromagnets, we make the motor
rotate in the opposite direction.

47 An electromagnet produces an electric field “on command”, with the passage of
an electric current.
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The stepper motor: an abstract model

Now let’s look at the following figure, an abstract model of the 28BYJ-48
stepper motor. We see 32 electromagnets grouped by color. Four inputs (active
high) are available to the software programmer. Each input is connected to
a different group of electromagnets (the four groups are represented by the
colors blue, pink, yellow and orange).

To rotate the motor we individually activate the groups of electromagnets one
after the other in the desired direction.

When we activate the blue, pink, yellow and orange electromagnets in se-
quence, the arrow rotates clockwise. When we change the sequence to orange,
yellow, pink and blue, the arrow rotates counter-clockwise.

(a) (b) (c) (d)

Initial state First rotation Second rotation Third rotation

In the operating mode described, we see that each step corresponds to a
rotation of 11.25 degrees (360/32) of the motor tree.
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The component has a mechanical reduction gear set (as sketched in the figure
on the right).

The gear on the motor shaft is shown in
green. The gear set reduces the rotation by a
ratio of about 1:64.

Each time a new electromagnet is activated
in the sequence described, the external axis
(shown in yellow) executes a rotation of 0.18
degrees downstream of the gear ratio.

Three different stepper motor control modes

We have already looked at the simplest control mode for the stepper motor.
There are (at least) two other ways to drive this component.

One makes it possible to rotate the arrow by an angle half the standard step
(that is 0.09, taking into account the gear set) degrees, by activating not only
the electromagnet at the right of the arrow but also the one on the left. This
way, the arrow will be attracted between the two electromagnets, passing from
(a) to (b).

(a) (b) (c) (d)

Initial state First rotation Second rotation Third rotation

Then by deactivating the one on the left and leaving the one on the right
active (c) we can execute a second 0.09 degree rotation. This way we get a
complete step rotation, that is 0.18 degrees and we have doubled the motor’s
precision without changing the mechanics.

By continuing as shown in (d), (e), (f), (g), (h) and so on, we can make a
whole round angle by 0.09 degree steps.

(e) (f) (g) (h)

Fourth rotation Fifth rotation Sixth rotation Seventh rotation
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So, the sequence to activate for a clockwise rotation is the following:

The other driving mode allows us to raise the angular momentum generated
by the motor by activating not just the electromagnet closest to the arrow but
also the next one, as shown in the following figure. It increases the strength
of the attraction on the arrow.

(a) (b) (c) (d)

Initial state First rotation Second rotation Third rotation

What follows is the timing diagram for a clockwise rotation.

This mode will be used in the following programming example.



5.6 Project examples 521

5.6.5.1 The system

The control system for the stepper motor is based on the “DMC8 Microcom-
puter” component (see the following figure). Pin 0 of port IA is connected to
switch DIR, which can control the motor’s direction of rotation. If it is set at
‘1’ it is counter-clockwise but clockwise if it is at ‘0’.

Output port OA drives the motor. Specifically, the blue, pink, yellow and
orange control wires are driven by port bits 3, 2, 1 and 0, respectively. A timer
activates interrupt requests Int every 2 mS. When the request is accepted a
pulse on output IntA automatically deactivates line Int.

Once it has executed the necessary initializations after system reset, the main
program enters an infinite loop where it reads input port IA and memorizes
the value in the DIR variable, which is read by the interrupt handler.

The interrupt handler updates the value of the blue, pink, yellow and or-
ange commands in line with what is memorized in the DIR variable, which is
updated by the main program. For every call, it must show a new value on
output port OA for the sequence of commands needed to rotate the motor in
the direction required by the DIR input.

The program

We declare the input port (CNTRL) and output port (MOTOR).

CNTRL EQU 00h ; IA input port: direction (bit 0)

MOTOR EQU 00h ; OA output port: motor control

We define the DIR and ANGLE variables (each one byte sized). The DIR
variable stores the direction of rotation required. The use of ANGLE will be
explained further on.
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DIR EQU 0FC00h ; direction of rotation

ANGLE EQU 0FC01h ; index in the SEQUENCE table

We insert the jumps to the start of the program and the interrupt handler.

ORG 0000h

JP START

ORG 0038h

JP HINT

ORG 0100h

At the start of the main program, as usual, we initialize the Stack Pointer,
the variables used and the output ports. Then before entering the main loop,
we enable interrupts.

START: LD SP,0FFFFh ; initialize the Stack Pointer

LD A,00h ; zero the variables DIR and ANGLE

LD (DIR),A

LD (ANGLE),A

OUT (MOTOR),A ; and the output port MOTOR

EI

As mentioned previously, the main loop does nothing more than update the
required direction of rotation in the variable DIR.

MAIN: IN A,(CNTRL) ; read the input port

AND 00000001b ; mask the unused bits

LD (DIR),A ; update the rotation direction

JP MAIN

The interrupt handler HINT, which is called every 2 mS, updates the control
lines of the motor.

The program saves the registers in use on the Stack and then reads the re-
quired direction of rotation from the DIR variable and decides whether to
increment or decrement an index (ANGLE). As we will see in more detail fur-
ther on, by incrementing the ANGLE index, we get a clockwise rotation and
by decrementing it, we get a counter-clockwise rotation. The count is made
cyclical on two bits (so that the value of ANGLE can assume only values from
0 to 3), and the resulting value is saved back in ANGLE.

HINT: PUSH AF

LD A,(DIR) ; get the rotation direction

OR 00000000b ; modify the flags

LD A,(ANGLE)

JP Z,RIGHT ; jump, or not, according to the direction

LEFT: DEC A ; counter-clockwise rotation

JP UPDATE

RIGHT: INC A ; clockwise rotation

UPDATE: AND 00000011b ; make the count cyclical (on two bits)

LD (ANGLE),A
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The CONTROL subprogram, analyzed further on, returns to the accumulator
the configuration of commands that are needed to rotate the motor, given the
ANGLE index in the accumulator. The configuration we get is then transferred
to the MOTOR output port. Then we retrieve the saved registers and the
handler re-enables the interrupts and returns the control to the interrupted
program.

CALL CONTROL ; get the motor commands from the table

OUT (MOTOR),A ; write the commands to the driver

POP AF

EI ; re-enable interrupts

RET ; return to the interrupted program

What follows is the SEQUENCE table, which contains the sequence of com-
mands needed to rotate the stepper motor clockwise, by driving it in the mode
that generates the greatest angular momentum. If the table is read in reverse,
it can also rotate the motor counter-clockwise.

SEQUENCE: DB 00001100b ; active commands: blue, pink

DB 00000110b ; active commands: pink, yellow

DB 00000011b ; active commands: yellow, orange

DB 00001001b ; active commands: orange, blue

The CONTROL subprogram reads the table. It takes an index passed through
register A and returns the desired value back into the same register.

CONTROL: PUSH HL

LD HL,SEQUENCE ; add the index in register A

ADD A,L ; to the table base address

LD L,A

JP NC,NOCARRY

INC H

NOCARRY: LD A,(HL) ; get the desired value in A

POP HL

RET

5.6.5.2 Implementation on FPGA

The following subsections have figures that summarize the connections chosen
for each board, which are useful for testing the system.

The DE2 board

The following figures show the devices chosen for the DE2 board, both in table
form (as generated by Deeds), and in terms of physical connections.
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Take care to also connect the power supply wires (+5V and GND) of the
motor control board, as shown in the following figure.
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The DE0CV board

The assignment of devices for the DE0-CV board is very similar to that set
for the DE2.

Likewise, pay close attention when connecting the motor control power supply
(+5V e GND) as shown in the figure.
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The EP2C5 board

The connections on the EP2C5 board require the connection of an external
slide switch to manage the direction (DIR). We will use the only push-button
on the board for manual system reset. The following table shows a summary
of the connections as generated by Deeds.

What follows is the photo of a board with the physical connections to make
for the DIR slide switch and the 10KΩ pull up resistors.

The motor’s power supply can be connected by using the +5V on the board
next to the power supply connector (as shown in the figure) even if there is
no soldered pin.
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5.6.6 Using a liquid crystal display (LCD)

In this sample project, we will first introduce the interface of the LCD (Liquid
Crystal Display) that was mounted on a “vintage” Nokia 5110 mobile phone48

and many others. Then we will analyze and build a microprocessing system
that can show the classic “Hello World” message on this display.

A brief introduction to graphic displays

Any single-color display like the one here, can be understood as an ordered
collection of small point sources of light that can be controlled electronically.
When they are lit they have only one color depending on their physical char-
acteristics. They are commonly called “pixels” (from “PIcture - ELement”),
in that they represent the part of the image that is the smallest and cannot
be divided.

By turning some pixels on and others off,
we can create any type of visual informa-
tion (text, drawings, graphs, sheet music,
photographs, etc.).

The term pixel does not only refer to single-color images; they can also be
multi-colored.

If we put three small lights in red, green and blue (RGB) in the
space for one single-color pixel, we get a tri-color display. By
regulating the intensity of the three lights, we can represent
most of the visible color spectrum.

This is the color model currently used for screens. There are others, however,
such as the RGBY which adds yellow to the red, green, blue combination, and
the CMYK based on cyan, magenta, yellow and black, which is commonly used
in printers.

The lights discussed here can be produced with different technologies like
LED, plasma and others. The differences come in the physical characteristics
of the displays, which have an effect on the range of colors displayed, the lumi-
nosity, energy consumption, durability, resistance to mechanical stress... the
basic features of an electronic system.

Aside from production technology, the screens differ in the density of pixels
per inch (PPI), the higher it is, the less we see the outline of the pixels. Above
300 PPI we cannot see the outline of the pixels at a distance of 10-12 cm.
Another difference that is important from the commercial perspective is the
width and length of the pixel array.

48
https://it.wikipedia.org/wiki/Nokia_5110

https://it.wikipedia.org/wiki/Nokia_5110
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The Nokia 5110 display

The display used in the Nokia 5110 is single-color
and made up of an array of 48 × 84 liquid crystals
for a total of 4032 pixels (the component is shown
at the right).

The pixel array is managed by an electronic cir-
cuit inside the display, designed specifically by the
manufacturer to handle all the physical details au-
tonomously. This allows the system designer to
deal only with some settings and what is shown
on the display.

The electronic circuit in question is an integrated component called the
PCD854449 made by Philips in the 1990s. It offers programmers a serial inter-
face for handling internal parameters and for sending the content to show on
the display. Before analyzing the communication interface in detail, we will
discuss the structure of the chip’s internal memory.

The structure of the PCD8544 chip’s internal memory

Inside the PCD8544 component, we have an 8-bit, 48 x 84 location RAM
memory that contains the program for the image on the screen. The figure at
the top of the opposite page shows the relation between the position of the
RAM’s flip-flops and that of the liquid crystals.

Up front, we see the array of liquid crystals. In the background, we see the
memory divided into 6 banks (numbered 0 to 5). Each bank corresponds to
an 84 pixel-wide, 8 pixel-high strip (in total, 6 strips × 8 pixels = 48 vertical
pixels).

As an example, on the left of the figure, the flip-flops that make up the first
location in every bank of the RAM are highlighted. An arrow shows the rela-
tion between the position of the first flip-flop of the memory location and the
corresponding liquid crystal (a pixel).

Each flip-flop addresses a single liquid crystal. A logical ‘1’ activates the liquid
crystal to black. A ‘0’ turns the crystal off. This allows the background color
to pass through.

When the system is powered, the RAM contains random values and then
needs to be initialized. To write the values in the RAM memory, the chip uses
the data received on the serial line. Every byte that is sent writes 8 flip-flops,
i.e., one RAM memory location.

The second figure on the same page shows the locations that make up the
RAM memory.

49
Datasheet PCD8544: https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf

https://www.sparkfun.com/datasheets/LCD/Monochrome/Nokia5110.pdf
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As shown in the figure at
the bottom of this page, the
RAM is organized into two
dimensions (the X axis and
Y axis).

The figure below also high-
lights the order in which the
bits are organized in an indi-
vidual location.

We start with the least sig-
nificant bit, which is stored
in the highest flip-flop and
keep going down until we get
to the most significant bit at
the lowest flip-flop.

Consider again the figure at
the left showing the relation
of the flip-flop position to the
corresponding liquid crystal.
We see how the least signifi-
cant bit of the first RAM lo-
cation of Bank 0 drives the
first liquid crystal of row 0.
Continuing down we get to
the most significant bit of
the first RAM location of
Bank 5, which drives the first
crystal of row 47.

Two internal chip registers
store the x and y coordinates
of the memory cell currently
in use. At system reset, they
are both initialized to zero.

These registers can be set manually through the serial interface, although nor-
mally they are handled automatically by the chip according to the addressing
method that’s been chosen.
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Addressing methods

There are two methods for addressing the RAM: “row addressing” and “col-
umn addressing”. In row addressing (this will be used in our example and is
shown in the following figure), the memory locations are addressed row by
row from left to right, as we are used to writing with pen and paper.

After each write operation, the registers are automatically incremented. Once
the last row is written, the process restarts cyclically from the beginning.

For column addressing (see the following figure), first, all six locations in the
first column (having index zero) are written from top to bottom. Then we
increment the column and repeat the process. Once the last column is written
the process restarts cyclically from the beginning.

Now that we have analyzed the structure of the chip’s internal memory, we
can see how to interact with it.

Communication interface

The PCD8544 integrated circuit offers the designer a programming interface
for the RAM memory based on five connections: SDIN, SCLK, D/C, SCE
and RES. The interface provided requires serial synchronous communication
with 8-bit words where the most significant bit is sent first (see the following
figure).
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The five lines control the serial data (SDIN), the communication clock (SCLK)
and the format of the data (D/C), the chip enable (SCE) and the device reset
(RES).

Both the control words that act on the internal settings and the data to show
on the display can be sent to the chip through the interface. The use of the
D/C line allows us to make this distinction.

To start communication with the chip, we need to activate line SCE. This
enables the action of the SCLK line, the serial communication clock.

The chip acquires the logic value presented on line SDIN at every rising edge of
line SCLK. A data packet sent on this serial line is made up of 8 bits, starting
from the most significant. The maximum frequency of the communication
clock is 4 MHz.

The D/C line defines the content of the packet. If D/C is set at ‘0’ while the
last bit of the packet (the least significant) is sent, the word will be interpreted
as a command. Otherwise the word will be interpreted as information to write
on the display.

Since this explanation is introductory, we have chosen not to show the com-
plete set of chip commands. This section only contains the basic commands50.
Therefore, we will continue with a presentation of a brief display initialization
sequence and then with useful instructions for writing the display contents
into its RAM memory.

Initializing the display

This section will present a short series of instructions to make the display
operative. As explained, we have left some instructions aside, such as those
for handling some physical details. Yet, these are not essential for the display
to function in closed environments with temperature control.

After we reset the system and activate the RES line for a short time, we can
begin to interact with the display.

The first thing to do is set the contrast51 of the display. If we omit this step,
the information displayed might not be visible to the human eye.

50 For a complete analysis, please refer to the PCD8544 datasheet cited previously.
51 The contrast is regulated through the tension the liquid crystals work on.
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This parameter can assume values from 0 (minimum contrast) to 127 (max-
imum contrast). To set it, we must send the chip the following command,
which orders the chip to pass to the “extended instruction set”, used to define
the physical parameters of the display.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 1 0 0 0 0 1

Once in the extended instruction set mode, we can set the contrast by sending
the byte below:

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 1 C6 C5 C4 C3 C2 C1 C0

The protocol requires the most significant bit at ‘1’. The remaining bits repre-
sent the selected contrast value. A good contrast value to set for closed rooms
is 16 (C6..c0 = 00100002). Once the contrast is set, we can go back to the
instructions’ “normal mode” with the following byte.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 1 0 0 0 V 0

In this step, we can set the desired addressing mode on bit V (a ‘0’ sets the
mode for rows and a ‘1’, the mode for columns). If we want to use the display
to show text, it is best to use row addressing as suggested in the previous
example. We can change the addressing mode at any time by using the same
command.

Lastly, we set the normal mode for the display and then send the data.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 1 1 0 0

Now we can finally move forward and send the data to be shown.

Transmitting the data to the display

The system reset has zeroed registers X and Y, which point to the memory.

Therefore the currently selected RAM cell is the
first one in Bank zero, which drives the vertical
strip of pixels at the upper right (see the figure
at the right). At every write operation, registers
X and Y are incremented according to the cho-
sen addressing method with no need for external
intervention. So as we send more data bytes, con-
tiguous locations will be written.

At the beginning, the RAM contains unknown values, so it is best to initialize
it at a known value by sending 504 (84 × 6) data bytes. The automatic
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handling of write addresses makes it so that after 504 writes, the contents of
register X and Y go back to the initial value (0 in this case).

To send the data, we need to select the “data mode” on the interface by
setting the D/C line to ‘1’. At this point, we can start to send the bytes to the
display, one by one. The following timing diagram shows the signals involved
in sending two consecutive data bytes to the chip.

Changing the write flow of the RAM

If we wanted to skip to writing an arbitrary memory location, without follow-
ing the established order of the selected writing modality, we could re-write
the X and Y addressing registers. The next instruction writes register X, which
addresses the X axis.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 1 X6 X5 X4 X3 X2 X1 X0

The following byte writes register Y, which addresses the Y axis.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 0 0 0 Y2 Y1 Y0

Once these registers are set, we can continue sending data, taking care to
notify the interface by setting the D/C line to ‘1’.

Writing will start again as of the newly selected memory location. Registers
X and Y will continue to be automatically managed by the chip according to
the previously set addressing mode.

Other display operating modes

Aside from the normal mode, set at initialization, there are 3 others that we
can select through the following command.

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 1 D 0 E

The first mode turns off all the liquid crystals (D = ‘0’, E = ‘0’), the second
turns them all on (D = ‘0’, E = ‘1’) and the third inverts the colors of the
display (D = ‘1’, E = ‘1’). Normal mode is set by D = ‘1’ and E = ‘0’.
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Managing the display state

We can manage the display state by sending the following command byte:

D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 1 0 0 PD V H

Bit PD (“Power Down”) active high, turns off the display and leaves the
internal state of the registers unaltered. To achieve minimum consumption we
must fill the display RAM with zeroes. It is useful to keep a software copy of
what was stored in the RAM before to be able to show it again the next time
the display is turned on.

Bit V regulates the addressing mode. If it is set at ‘0’ the “row addressing”
mode is selected, otherwise the “column addressing” mode is used. Finally,
bit H allows us to enter the “extended mode” of the instructions, when set at
‘1’. If it is set at ‘0’ the normal instruction mode is selected.

5.6.6.1 The system

The system is based on the “DMC8 Microcomputer”. At output port OA the
display serial interface lines SCE, DC and SDIN are connected to bits 2, 1 and
0 respectively. The port’s wA signal strobe has been connected to the SCLK
line, as the serial communication clock. The reset of the DRES display has
been connected to the microcomputer’s reset output RsOut.

After the main program executes the necessary initializations, it shows the
“Hello World!” message on the display and enters an infinite cycle where it is
inactive.
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The program

The address of the CNTRL output port is declared and this is followed by
the link to the reset and the initialization of the Stack Pointer.

CNTRL EQU 00h ; IA port: SDIN (bit 0), DC (1), !SCE (2)

ORG 0000h

JP 0100h

ORG 0100h

INIT: LD SP,0FFFFh ; initialize the Stack Pointer

As seen in the previous section, before being able to see something on the
display, we need to set the contrast. To set this parameter, we first need
to use the “extended instruction” mode by sending the following command
through the SENDC function, which will be analyzed later.

LD B,00100001b ; PD = ‘0’, V = ‘0’, H = ‘1’

CALL SENDC ; set the extended instruction mode

Then we send the next command, which sets the contrast to 8.

LD B,10001000b

CALL SENDC ; set the contrast to 8

Finally we go back to normal instruction mode and set normal working mode.

LD B,00100000b ; PD = ‘0’, V = ‘0’, H = ‘0’

CALL SENDC ; go back to normal instruction mode

LD B,00001100b ; D = ‘1’, E = ‘0’

CALL SENDC ; set normal working mode

The display’s reset hardware has initialized all the internal registers to zero,
so the pointers to the X and Y axes have been zeroed. We know that after
reset, the state of the RAM is unknown. So the CLRSCR function is called to
zero all the display’s memory locations. This function leaves the state of the
pointers intact.

MAIN: CALL CLRSCR ; initialize all the RAM locations to zero

At this point, the address of the “Hello World!” string is loaded in index
register IX. Then the X axis and Y axis where we want to start writing are
loaded in registers B and C, respectively. After having loaded these parameters
into the registers, we call the PRTSTR function, which shows the string on
the display at the specified point (X,Y). Finally, the program enters an infinite
loop where it is inactive, as per specifications.

LD IX,STR ; copy the string’s address to register IX

LD B,10 ; set X axis = 10 (through register B)

LD C,2 ; set Y axis = 2 (through register C)

CALL PRTSTR ; finally, display the string

STOP: JP STOP ; and enter in an inactive infinite loop
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The CLRSCR function saves the used registers in the Stack then initializes
the display RAM to zero. To do this, it enters a loop where it sends 504
data bytes through the SENDD function (analyzed below). After the saved
registers are recovered, it goes back to the calling program.

CLRSCR: PUSH AF
PUSH BC
PUSH HL

LD HL,504 ; 84 x 6 = 504 RAM locations
LD B,0 ; set B = 0 to zero each location

CLRAM: CALL SENDD ; of the display RAM
DEC HL ; count the locations
LD A,L
OR H ; set the flags according to HL value
JP NZ,CLRAM ; exit if finished

POP HL
POP BC
POP AF
RET

The next PRTSTR function shows on the display the string stored in memory
at the address in register IX starting from the X axis indicated in B and the
Y axis in C. After the used registers are saved as usual, the function sets the
display’s X and Y axes by calling the XSET and YSET subprograms analyzed
below.

PRTSTR: PUSH AF
PUSH HL
PUSH BC
PUSH DE

LD A,B
CALL XSET ; set X axis

LD A,C
CALL YSET ; set Y axis

Then we read the first ASCII character of the string and make sure it is not
equal to the string terminator (0). If it is, we exit with no further ado.

READ: LD A,(IX) ; read the character pointed by IX

CP 00h ; check if it is the string terminator

JP Z,EXIT ; exit if it is

If it is not equal, we go ahead and make sure the character we read is print-
able52.

CP 20h ; if the character is not included

JP C,PINC ; among the printable ones

CP 7Fh

JP NC,PINC ; jump to the label PINC

52 That is can be shown and isn’t a “control character”, such as the previously
mentioned terminator of the string.
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If it is not printable, we jump to the PINC label, where we move on to reading
the next character without showing anything.

The ASCII code that has been read is then adjusted to make index 0 coincide
with the first printable character, to appropriately address the table containing
the fonts53, shown below. For now, it suffices to know that it is made up of 5
bytes for each printable code and it takes up a total of 480 bytes.

To get the address of the first byte representing the character graphically, we
need to multiply the adjusted index by 5 to calculate the needed offset. Since
there are more than 256 bytes making up the table, we have used the 16-bit
HL register to process the index as described.

SUB 20h ; adjust the index excluding

; the not-printable characters

LD L,A ; copy the 8-bit index to HL

LD H,00h ; and multiply it by 5

ADD HL,HL ; x 2

ADD HL,HL ; x 2

ADD A,L ; +1

JP NC,NCY

INC H ; if Carry, increment the high byte

NCY: LD L,A ; now we have the offset in HL

Then, the resulting offset is added to the base address of the ASCII table,
giving us the address of the first byte to send.

LD DE,ASCII ; add the ASCII table base address

ADD HL,DE ; to the offset

In a loop, all the data bytes are read and sent. We point to the data bytes
using the HL register, which we increment on every loop repetition.

LD D, 5 ; set the number of bytes for each character

READ2: LD A,(HL) ; read the byte to send (pointed by HL)

LD B,A

CALL SENDD ; send data

INC HL ; point to the next byte

DEC D ; decrement the number of bytes

JP NZ,READ2 ; still to send

Finally, we go ahead and increment the IX register, to read the next character
in the string on the next repetition as of the label READ.

PINC: INC IX ; point to the next string character

JP READ ; repeat loop as of READ

We only exit the subprogram and restore the used registers when we get to
the terminator of the string.

53 “Font”, typically refers to typeface. Here, it refers to the sequence of bytes to
send to the display that make up the characters in graphical terms.
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EXIT: POP DE

POP BC

POP HL

POP AF

RET

The XSET function sets the display’s X axis pointer by using the value passed
from the calling program to the accumulator. After saving the register in use,
the function limits the value passed by the calling program to 83.

XSET: PUSH AF

PUSH BC

CP 84 ; limit to 83 the value set for the X axis

JP C,XNCLP ; if it is greater than 83 (when Carry = 0)

LD A,83

Then it sets bit 7 of the accumulator to ‘1’, as required by protocol, and it
sends everything to the display in the form of a command. In the end, we
restore the previously saved registers and exit the function.

XNCLP: SET 7,A ; set bit 7 to ‘1’,

LD B,A ; as required by the protocol

CALL SENDC ; send the command to the display

POP BC

POP AF

RET

A similar operation is executed by the YSET function, which sets the address
of the Y axis with the value passed to A, limiting it to 5.

YSET: PUSH AF

PUSH BC

CP 6 ; limit to 5 the value set for the Y axis

JP C,YNCLP ; if it is greater than 5 (when Carry = 0)

LD A,5

YNCLP: SET 6,A ; set bit 6 to ‘1’,

LD B,A ; as required by the protocol

CALL SENDC ; send the command to the display

POP BC

POP AF

RET

The SEND subprogram sends the byte in register B to the display in the form
of a command if register C is set to 0, or in the form of data if it is not. We
save the used registers on the Stack as usual, then counter E of the sent bits
is initialized to 8.

SEND: PUSH AF

PUSH DE

LD E,8 ; initialize the bit counter to 8
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After that, the SCE line is set to ‘0’, while the DC line is set according to the
content of register C.

BIT 0,C

JP NZ,DATA ; if C = ‘0’

COMMAND: LD A,00000000b ; set DC = ‘0’ (bit 1)

JP SLOOP ; and go on to send a “command”

DATA: LD A,00000010b ; otherwise send a “data byte” (DC = ‘1’)

; note that bit 2 (!SCE) is activated at ‘0’

We then go on to retrieve the most significant bit from register B and insert it
in the bit in position 0, which commands data line SDIN. The configuration
we get in the accumulator is copied on output port OA. Writing on the port
causes the wA line to activate, which produces a clock pulse. On the clock
rising edge, the data line is acquired by the peripheral.

SLOOP: RLC B ; retrieve the next bit to send

JP NC,DRES ; if it is high

DSET: SET 0,A ; set SDIN to ‘1’ (on bit 0)

JP GO

DRES: RES 0,A ; otherwise set it to ‘0’

GO: OUT (CNTRL),A ; send the bit on the serial line

This operation is repeated for all 8 bits in B. Then, we disable the display
interface setting SCE to ‘1’, restore the registers and exit the subprogram.

DEC E ; decrement the number of bits to send

JP NZ,SLOOP ; leave the loop if all bits have been sent

LD A,00000100b ; set !SCE = ‘1’ (bit 2)

OUT (CNTRL),A ; to disable the display interface

POP DE

POP AF

RET

The SENDD and SENDC versions of the SEND subprogram do nothing more
than set the parameter of register C before calling it. SENDC puts C = 0
since it sends a command on the serial line. Because it sends a data byte on
the serial line, however, SENDD puts C = 1.

SENDC: PUSH BC

LD C,0 ; send a command

CALL SEND

POP BC

RET

SENDD: PUSH BC

LD C,1 ; send a data byte

CALL SEND

POP BC

RET
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What follows is the definition in the ROM memory of the message string to
show and the table of the pixels corresponding to the ASCII characters (the
table is shown only in part due to space restrictions).

STR: DB ˝Hello World!˝, 00h

ASCII: DB 00h, 00h, 00h, 00h, 00h ; 20 = (space)
DB 00h, 00h, 5fh, 00h, 00h ; 21 = !
DB 00h, 07h, 00h, 07h, 00h ; 22 = ˝
DB 14h, 7fh, 14h, 7fh, 14h ; 23 = #
DB 24h, 2ah, 7fh, 2ah, 12h ; 24 = $
DB 23h, 13h, 08h, 64h, 62h ; 25 = %
DB 36h, 49h, 55h, 22h, 50h ; 26 = &
DB 00h, 05h, 03h, 00h, 00h ; 27 = ’
DB 00h, 1ch, 22h, 41h, 00h ; 28 = (
DB 00h, 41h, 22h, 1ch, 00h ; 29 = )
DB 14h, 08h, 3eh, 08h, 14h ; 2A = *
DB 08h, 08h, 3eh, 08h, 08h ; 2S = +
DB 00h, 50h, 30h, 00h, 00h ; 2C = ,
DB 08h, 08h, 08h, 08h, 08h ; 2D = -
DB 00h, 60h, 60h, 00h, 00h ; 2E = .
DB 20h, 10h, 08h, 04h, 02h ; 2F = /

DB 3eh, 51h, 49h, 45h, 3eh ; 30 = 0
DB 00h, 42h, 7fh, 40h, 00h ; 31 = 1
DB 42h, 61h, 51h, 49h, 46h ; 32 = 2
DB 21h, 41h, 45h, 4bh, 31h ; 33 = 3
DB 18h, 14h, 12h, 7fh, 10h ; 34 = 4
DB 27h, 45h, 45h, 45h, 39h ; 35 = 5
DB 3ch, 4ah, 49h, 49h, 30h ; 36 = 6
DB 01h, 71h, 09h, 05h, 03h ; 37 = 7
DB 36h, 49h, 49h, 49h, 36h ; 38 = 8
DB 06h, 49h, 49h, 29h, 1eh ; 39 = 9

DB 00h, 36h, 36h, 00h, 00h ; 3A = :
DB 00h, 56h, 36h, 00h, 00h ; 3B = ;
DB 08h, 14h, 22h, 41h, 00h ; 3c = <
... ............... ; ...
... ............... ; ...

5.6.6.2 Implementation on FPGA

The following sections have figures that summarize the connections chosen for
each board, which are used to test the system.

Note: the LCD components on the market are produced by different compa-
nies. They may differ in the position of the connections on the connector. If
any component is unlike the type indicated in the following figures, it will
be necessary to review the connections according to the maker’s indications,
which are often shown on the silk-screen printing of the board itself.
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The DE2 board

The following figures show the devices chosen for the DE2 board, both in table
form (as generated by Deeds), and in terms of physical connections.

Take care to also connect the power supply wires (+3,3V and GND) of the
display, as shown in the following figure.



542 5 Microprocessor systems on FPGA

The DE0CV board

The assignment of devices for the DE0-CV board is very similar to that set
for the DE2.

As before, pay close attention when connecting the power supply for the dis-
play (+3.3V and GND) as shown in the figure.
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The EP2C5 board

We will use the only push-button on the board for manual system reset. The
following table shows a summary of the connections as generated by Deeds.

What follows is the photo of a board with the physical connections to make.
Again, pay close attention when connecting the power supply for the display
(+3.3V and GND) as shown in the figure.
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5.6.7 LCD stopwatch

In this project, we will analyze and build a digital stopwatch based on the
DMC8 microcomputer that shows the time count on an LCD graphic display.

5.6.7.1 The system

This system, which is based on a “DMC8 Microcomputer” component, is
shown in the following figure.

The TIME push-button is connected to the system through line 0 of input
port IA. When it is pressed it generates a zero. The push-button also starts,
pauses and restarts the time count. Pressing the RES push-button restarts
the whole system and zeroes the count.

The counted time is shown on the LCD display of the Nokia 5110 phone used
in the example in Section 5.6.6, much of whose code is borrowed to drive the
component.

On output port OA, the display’s interface lines SCE, DC and SDIN are
connected to bits 2, 1 and 0, respectively. The port’s wA strobe signal is
connected to the SCLK line (the serial communication clock). DRES, the
display reset, is connected to the microcomputer’s reset output RsOut.

A timer activates interrupt requests Int every 10 mS. When the request is
accepted a pulse on output IntA automatically deactivates line Int. The timer
allows the system to precisely measure time.
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The program

The code starts with the declaration of input port BUTTON and output port
CNTRL. CNTRL drives the display’s serial interface. Read the comments in
the code.

BUTTON EQU 00h ; IA port: push-button (bit 0)

CNTRL EQU 00h ; OA port: SDIN (bit 0), DC (1), !SCE (2)

This is followed by the declaration of the variables. EN activates the count
(when set at ‘1’, the count is enabled, otherwise it is not).

BSTATE and PBSTATE store the current and previous states of the TIME
button downstream of the debouncing checks.

EN EQU 0FC00h ; count enable

BSTATE EQU 0FC01h ; TIME push-button current

PSTATE EQU 0FC02h ; and previous states

Then the variables for the BCD (Binary Coded Decimal) time count are de-
clared. BCD facilitates the translation of numbers into ASCII characters.

More specifically, CSEC counts the hundredths of second needed to make
one tenth of a second elapse; DSEC counts tenths of a second; SEC1 and
SEC2 count seconds and finally, MIN1 and MIN2 count minutes. Each of the
variables above takes up one byte of memory.

CSEC EQU 0FC03h ; counter for the hundredths of second

MIN2 EQU 0FC04h ; BCD most significant minutes digit

MIN1 EQU 0FC05h ; BCD least significant minutes digit

SEC2 EQU 0FC06h ; BCD most significant seconds digit

SEC1 EQU 0FC07h ; BCD least significant seconds digit

DSEC EQU 0FC08h ; BCD tenths of a second digit

Finally, the STR variable is declared. It contains the string to show on the
display. The format chosen for displaying the time is MM:SS:D, where MM
represents the two digits for the minutes, SS the two digits for the seconds
and D the digit for the tenths of a second.

The string is composed of 5 digits, two separators (‘:’) and one character that
terminates the string (00h). Therefore, it occupies a total of 8 bytes.

STR EQU 0FC09h ; string to show on the display

Registers B, C and D are dedicated to storing the intermediate readings of
the debouncing check. B stores the last reading, C stores the second-to-last
and D stores the third-to-last.

After the usual links to the reset and the interrupt handler, the Stack Pointer
is initialized. The LCD component is initialized by the INITD subprogram
that zeroes the graphic RAM and defines the working parameters.
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ORG 0000h
JP 0100h
ORG 0038h
JP HINT
ORG 0100H

INIT: LD SP,0FFFFh ; initialize the Stack Pointer
CALL INITD ; and the LCD display

Then the variables and the registers used are zeroed.

LD A,00h ; zero all the other variables

LD (EN),A

LD (BSTATE),A

LD (PSTATE),A

LD (CSEC),A

LD (MIN2),A

LD (MIN1),A

LD (SEC2),A

LD (SEC1),A

LD (DSEC),A

LD B,A ; zero the registers in use

LD C,A

LD D,A

When the DISPLAY subprogram is called, a zeroed time count is shown on
the display screen. The time count has been set to zero by the previous ini-
tialization. This subprogram’s code will be analyzed next. After enabling the
interrupts, we enter an empty main loop and wait for an interrupt request.

CALL DISPLAY ; a zeroed time is shown on the display

EI

MAIN: JP MAIN

The INITD subprogram initializes the LCD display, sets its physical parame-
ters and zeroes the graphic RAM. The sequence of instructions is taken from
the first rows of the code in the example in Section 5.6.6.

INITD: PUSH BC

LD B,00100001b ; PD = ‘0’, V = ‘0’, H = ‘1’

CALL SENDC ; set the extended instruction mode

LD B,10001000b

CALL SENDC ; set the contrast to 8

LD B,00100000b ; PD = ‘0’, V = ‘0’, H = ‘0’

CALL SENDC ; go back to normal instruction mode

LD B,00001100b ; D = ‘1’, E = ‘0’

CALL SENDC ; set normal working mode

CALL CLRSCR ; initialize all the RAM locations to zero

POP BC

RET
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Every 10 mS the timer generates an interrupt, which causes the execution of
its handler at the HINT label. Before acquiring the state of the TIME button,
HINT shifts the previous readings in registers B and C into registers C and D,
respectively. This makes room for the new reading that is stored in B (read
the comments in the code).

HINT: LD D,C ; second-to-last reading into third-to-last

LD C,B ; last reading into second-to-last

IN A,(BUTTON) ; get the current push-button state

AND 00000001b ; mask the bits not of our interest

LD B,A ; copy the current state to B

The new reading is then compared to the previous ones. If they all show the
same value, the current one is confirmed and saved in the BSTATE variable.

Before saving the new reading in the BSTATE variable, we need to transfer
the previous content of BSTATE into PSTATE, where we store the reading
that was confirmed before.

Then, a logic operation between the two values will allow us to detect the
falling edges of the push-button line. To do this, the previous read confirmed
is copied also to register L.

CP C ; compare the state with the previous

JP NZ,TUPDATE

CP D

JP NZ,TUPDATE ; if the reading is confirmed

LD E,A ; copy it to register E

LD A,(BSTATE) ; get the last confirmed reading

LD L,A ; and copy it to register L

LD (PSTATE),A ; and to the PSTATE variable

LD A,E

LD (BSTATE),A ; save the confirmed current reading

We execute an XOR operation to invert the new reading and put the result in
AND with the previous one. Then, if bit 0 is at ‘1’, a falling edge is detected
and the content of EN, which enables the time count, is inverted.

XOR 00000001b ; logic operation to detect a falling edge

AND L ; on bit 0

JP Z,TUPDATE ; if it is detected, go on and

LD A,(EN) ; invert the enable variable (EN)

CPL

LD (EN),A

Regardless of the result, we go on to evaluate the EN flag. If it is zero, we exit
the handler without changing the state of the display. If it is not, we move on
to the time count, starting from the hundredths of a second.

TUPDATE: LD A,(EN) ; check if the time count is enabled

OR A

JP Z,EXIT ; if it is, go on, otherwise exit
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Then the variable that counts hundredths of a second (CSEC) is incremented.
If 10 hundredths have elapsed, we proceed by incrementing the tenths of a
second and zeroing the hundredths. Otherwise, we exit without changing the
state of the display.

LD A,(CSEC) ; increment the hundredths of a second

INC A

LD (CSEC),A

CP 10 ; if 10 hundredths have not elapsed,

JP NZ,EXIT ; jump and exit, otherwise

LD A,0 ; zero the hundredths of a second

LD (CSEC),A ; and go on, incrementing the tenths

If the tenths of a second are at 10, it means we need to increment the second
counter. We zero the tenths of a second counter and go on to increment the
least significant digit of the seconds. Otherwise, we jump to update the state
of the display and exit.

LD A,(DSEC)

INC A ; increment the tenths of a second

LD (DSEC),A

CP 10 ; if a second have not elapsed,

JP NZ,EXITD ; jump to update the display and exit

LD A,0

LD (DSEC),A ; otherwise zero the tenths of a second

LD A,(SEC1) ; and increment the least significant digit

INC A ; of the seconds

LD (SEC1),A

If the least significant digit of the seconds has gotten to 10, it means that it
is time to increment the most significant digit and zero the least significant.
If not, we jump to update the display and exit.

CP 10 ; if 10 seconds have not elapsed,

JP NZ,EXITD ; jump to update the display and exit

LD A,0 ; otherwise zero the least significant

LD (SEC1),A ; digit of the seconds

LD A,(SEC2) ; and increment the most significant digit

INC A

LD (SEC2),A

If the most significant digit of the seconds has gotten to 6, we need to update
the minutes, so we proceed by zeroing that number54 and incrementing the
minutes. If not, we update the state of the display and exit.

CP 6 ; if 60 seconds have not elapsed,

JP NZ,EXITD ; jump to update the display and exit

54 The seconds’ least significant digit was already zeroed and passed from 59 to 60.
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LD A,0 ; otherwise zero the seconds (the least

LD (SEC2),A ; significant digit was already zeroed)

LD A,(MIN1) ; and increment the least significant digit

INC A ; of the minutes

LD (MIN1),A

Through the same process we update the minutes: first, we increment the least
significant digit and if it has not gotten to 10, we jump to update the display
and exit. Otherwise, we zero it and increment the most significant digit. When
this gets to 6, it is zeroed but the hours are not incremented since we will not
see them55. Thus the count restarts from zero.

CP 10 ; if 10 minutes have not elapsed,

JP NZ,EXITD ; jump to update the display and exit

LD A,0 ; otherwise zero the least significant

LD (MIN1),A ; digit of the minutes

LD A,(MIN2)

INC A ; and increment the most significant digit

LD (MIN2),A

CP 6 ; if 60 minutes have not elapsed,

JP NZ,EXITD ; jump to update the display and exit

LD A,0 ; otherwise zero the minutes (the least

LD (MIN2),A ; significant digit was already zeroed)

Finally, we update the display by calling the DISPLAY subprogram, which
will be analyzed further on. Then we re-enable the interrupts and go back to
the calling program.

EXITD: CALL DISPLAY ; update the display

EXIT: EI

RET

The DISPLAY subprogram updates the time count on the LCD display. The
individual decimal digits stored in the BCD code are first translated into the
corresponding ASCII code. To do this, we add their value to the hexadeci-
mal constant 30h (the first code in the ASCII table section representing the
numbers). The resulting characters are then linked in a string with a colon
(‘:’) as a separator between the minutes and seconds and another between the
seconds and tenths of seconds, giving us the classic MM:SS:D format.

The subprogram begins by saving the registers in use. Then it enters a count-
ing loop where every variable representing time is read in the order they are
stored in, starting from the most significant digit of the minutes and ending
with the tenths.

DISPLAY: PUSH AF ; save the register in use on the Stack
PUSH DE
PUSH IX
PUSH IY

55 With two extra variables, we could extend the code to count the hours.
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Before entering the loop, register E is initialized at 5 (to count the number of
digits used). Then the address of the STR string is assigned to index register
IX (the chain of characters is stored in STR). IY is set at the address of the
first digit of the measure to convert.

LD E,5 ; set the counter of the 5 digits

LD IX,STR ; set the string address in register IX

LD IY,MIN2 ; set the address of the first digit in IY

In the loop, the current digit of the time measure, whose address is contained
in IY is read so that its value can be translated into the corresponding ASCII
code. The resulting character is then saved in the STR string, concatenated
to the previous characters.

DLUP: LD A,(IY) ; get the current digit and add 30h

ADD A,30h ; to translate it into the corresponding

LD (IX),A ; ASCII code and add it to the string

Let’s use a little trick. If the loop counter is not zero and if it is even, it means
that we are between the minutes and the seconds or between the seconds and
the tenths so we need to insert a colon (‘:’) to separate the groups of digits.

LD A,E ; get the digit counter

CP 0

JP Z,NOSEP ; if this is not the last digit,

BIT 0,A ; and if the counter index is even

JP NZ,NOSEP

INC IX ; add the separator character ‘:’ to

LD A,3Ah ; the string to separate minutes from

LD (IX),A ; seconds and seconds from tenths

In any case, we update indexes IX and IY, and the loop counter. If all the
digits have been processed, we add the terminator (00h) to the sting end.

NOSEP: INC IY ; otherwise, update the pointers

INC IX ; to the string and to the digit

DEC E ; and decrement the digit counter

JP NZ,DLUP ; if all the digits have passed,

LD A,00h ; add the string terminator

LD (IX),A

Lastly, the address of the STR string is reloaded in IX and then passed to
the PRTSTR subprogram, which shows it on the display at the coordinates
indicated in registers B and C. For a description of the PRTSTR subprogram,
refer to the example in Section 5.6.6.

LD IX,STR ; copy the string’s address to register IX
LD B,22 ; set X axis = 22 (through register B)
LD C,2 ; set Y axis = 2 (through register C)
CALL PRTSTR ; display the string
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Finally, we restore the registers used and exit.

POP IY
POP IX
POP DE
POP AF
RET

5.6.7.2 Implementation on FPGA

Here, we show images that summarize the connections for each board, which
are useful for testing the system (refer to the observations on Page 540 re-
garding the different versions of the LCD component).

The DE2 board

The table above lists the
devices chosen for the
DE2 board (as gener-
ated by Deeds).

The figure on the left
shows the physical con-
nections to make be-
tween the board and the
LCD component.

Take care to connect the
display’s power supply
wires (+3,3V e GND) as
well, as suggested in the
figure.
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The DE0CV board

The assignment of devices for the DE0-CV board is very similar to that set
for the DE2.

As before, take care to connect the display’s power supply wires (+3.3V and
GND) as well, as shown in the following figure.
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The EP2C5 board

The table above lists the
devices chosen for the
EP2C5 board (as gener-
ated by Deeds).

The figure on the left
shows the physical con-
nections to make be-
tween the EP2C5 board
and the LCD display
component.

We use the only push-
button on the board to
reset the system.

In the figure, the exter-
nally added TIME but-
ton and the 10KΩ pull-
up resistor are high-
lighted.

Take care to also con-
nect the power sup-
ply wires (+3,3V and
GND), as shown in the
figure.
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Memories and busses

A.1 ROM memory

The term Read Only Memory (ROM) refers to a type of persistent memory
that stores information even with no power supply. This type of memory is
designed for long-term storage of information that does not change during
system operation.

In early versions of ROM memory, the content could not be changed after it
was made. Afterward, thanks to the evolution of technology, designers were
able to change the contents of ROM memory directly in the lab in the system
development phase. They were also able to do updates on equipment that was
already operating.

In terms of principle, we do not want the content of the ROM to be changed in
a system’s normal working conditions. Despite this, many systems today allow
for the contents of their ROMs to be changed even while they are working,
but it is important to note that the reprogramming phase arrests the normal
activity of the system. When the system starts again, the ROM goes back to
being unchangeable and will keep the information even when the system is
turned off.

A.1.1 A bit of history

As we can imagine, the ROM has undergone large-scale evolution, in part due
to increasing technological capacities and in part due to the changing system
requirements of ever more complex specifications.

The first forms of read-only memory were created with discrete components1

and they were introduced to give computers the capacity to activate au-
tonomously when the systems were turned on. They contained the first in-
structions computers would execute as of reset. The instructions served to

1 Diodes, transistors and resistors, all encased separately and each less than one
centimeter in size.

G. Donzellini et al., Introduction to Microprocessor-Based Systems Design,
https://doi.org/10.1007/978-3-030-87344-8
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make the computer operative and able to load, in the main memory, the pro-
gram to execute from the then-existing mass storage systems (punch cards,
punch tape and magnetic tape at the start of the 1960s).

Later, with the development of solid state integrated circuit technology, large
companies were able to build and sell integrated ROM memory on a single
chip. Over time, different manufacturing technologies have been developed
thanks to the success of microprocessors in reducing costs and improving
capacity in terms of the number of storable bits.

MASK ROM

In the beginning, the first ROMs were made directly by producers of inte-
grated circuits and programmed in the production phase according to the
specifications of the system designer (MASK ROM). This was a very costly
solution that was acceptable only to be sold in large-volumes. In fact, this
technique required adapting the production line every time it was necessary
to change the memory programming.

After this first solution, the industry began to offer ever more versatile
and economical ones that could be programmed directly in the lab, allow-
ing designers to develop and test programs and systems reasonably quickly.
The programmable devices that have followed are: PROMs (Programmable
ROMs), EPROMs (Erasable Programmable ROMs), EEPROMs (Electri-
cally Erasable Programmable ROMs), EAROMs (Electrically Alterable Pro-
grammable ROMs) and finally Flash ROMs.

PROMs

Since the contents of PROMs could be defined after they are built, they were
mass produced, leaving the definition of the content to the buyers. This type
of memory was then programmed by the designer using laboratory hardware
equipment called a “PROM programmer”. Once the content was defined, it
could not be changed again. Every time there was a programming error, a
new component needed to be used2.

Components like these that have to be inserted and re-
placed very often in the design phase were normally
mounted on a “zero insertion force” socket (see the im-
age on the right), to make it easy to replace them by
opening and closing the contacts with the lever.

From the industrial perspective, while an apparatus was being built, the
PROMS were programmed on the production line before being mounted.

2 A standard device that can be programmed only once is called OTP (One Time
Programmable)
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EPROMs

To make the components reusable, industry developed EPROMs, which are
erasable and re-programmable in the lab. One feature of these components is
the glass window that shows the chip and its connections (see the figure on
the right).

Memory was erased by exposing the chip to ultraviolet
rays (UVB) through the glass window, using a dedicated
device. This was a rather long process (10-20 minutes) and
could only be done a limited number of times.

Also in this case, chip programming was done with a ded-
icated EPROM programmer.

EEPROMs and EAROMs

The next technological development was EEPROM memory, which was not
only programmable, but also electrically erasable through a dedicated pro-
gramming circuit that could even be installed in the system itself. This made
it possible to reprogram the component without physically removing it from
the system.

Bear in mind that these components were still a type of ROM in that erasing
and reprogramming components could not be done by the ordinary micropro-
cessor connections but only at higher voltages (about 25 volts), that dedicated
programming circuits can provide. Also, this was not done location by location
but relatively slowly by entire cell blocks at a time.

Subsequently, EAROMs were introduced. They are very similar in their use
to EEPROMs but they feature the option of changing individual locations
rather than reprogramming entire blocks of data.

Flash ROMs

A “Flash” is a type of programmable and electri-
cally erasable memory that is also used as mass
storage (read and write) due to its high perfor-
mance. The photo on the right shows an example
(it does not seem different from many other inte-
grated components that we can find on a board).

A “Flash ROM” is a “Flash” type memory used as a ROM (in the literal
sense, i.e. preventing writing by the microprocessor).

Flash technology makes it possible to write and erase data in a single opera-
tion, unlike the previous technologies, giving us much greater speed.

Since the data is kept even when the computer is off, we find this used in cam-
eras, mobile phones, network music players, USB keys, personal computers,
tablets and wherever a lot of data storage is required.
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A.1.2 Operating principle

Originally, the term ROM referred only to MASK ROM, but it has been
extended and is used for all types of memory that do not erase when the
power source is cut (they are also called “non volatile”) and when the system
is working in its normal mode, can only be read. Hereafter, we will use the
term ROM with this meaning.

In this book, we will not go into the merits of the technological aspects of man-
ufacturing ROM memory or the components available. Rather, let’s consider
the logical and functional perspective. In the design phase, we will virtually
program the ROMs according to our needs. We will leave it to the Deeds envi-
ronment to take care of the physical details of this operation without getting
into the particulars of the actual programming technique. ROM programming
will take shape in the synthesis of ROM functions directly in the combinational
blocks available in the FPGA device mounted on a specific board prototype.

Let’s look at the figure on the right that shows a ROM com-
ponent available in the Deeds library. Only the connections
needed for reading the data inside it have been made avail-
able (for example, to be connected to a microprocessor). As
mentioned before, the programming has been done virtually
thanks to the development environment. Therefore the pins
that would be necessary in a real component, depending on
the type, for its programming, are absent here.

This is a 4-KByte ROM memory. Its 12 address wires (A11..A00) address 212

one-byte locations inside it. The location selected by the address can be read
through lines D7..D0.

When CS (Chip Select) is at ‘1’ makes it possible to
activate the functionality of the component. In this
class of ROM components taken from the Deeds
library, if CS = ‘0’, the outputs are zeroed.

The figure on the right shows an idealized version
of the inside of a generic ROM.

It appears in the form of a table where each loca-
tion is identified by a unique address. Each location
contains a constant (set in the programming phase).

When a ROM is used in a microprocessor-based system, it contains the pro-
grams that need to be executed in the form of binary codes.

In any case, it should be stressed that a ROM behaves, from a logical perspec-
tive, like a purely combinational network. Once it has been programmed and
is in use, it always provides the same outputs (the stored data) if the inputs
(the address lines) are the same.



A.1 ROM memory 559

An example of ROM application: a sine wave generator

A ROM can be used to store different types of
information. For example, it can contain a se-
quence of numbers that describes the shape of a
“digital signal”, such as the samples of a com-
plete period of a sine wave.

Let’s take the smallest ROM memory available
from the Deeds library and connect it as in the
figure at the right, for test purposes. This com-
ponent has only 16 4-bit locations (D3..D0), ad-
dressed by lines A3..A0. It also has the CS input
to enable its functionality.

If we activate the compo-
nent’s context menu (see
the yellow arrow in the
figure on the left), we
can open the “ROM Ed-
itor/Programmer” window
that allows us to program
the memory contents.

The figure below shows
what appears in the win-
dow that will open. Among
the various items, we see the
ROM editor grid.

In the “ROM Editor/Programmer” window, the grid allows us to manually
insert and/or change the content of the ROM, location by location.

In this example, however, the ROM contents have been generated automat-
ically. If we click on the “Waveform” button, shown at the bottom of the
window, another window appears, as shown in the following figure.
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Without going into the merits of all the functionalities it offers, let’s simply
say that we can choose a waveform among those available. Here, we have
chosen a sine wave (see the curve in red).

The software calculates the amplitude of the sine wave at regular time inter-
vals along the wave period, giving us a value (or “sample”) for each memory
location (16 in this case).

Then these sample values are approximated (“discretized”), with the number
of bits available in each memory location being taken into account. The results
are shown graphically on the same figure on the blue line superimposed on
the red curve of the original continuous sine wave. The resulting values are
the ones that we have seen in the ROM Editor/Programmer grid.

In the network in the following figure, a binary counter addresses all the ROM
locations one after the other in sequence. The ROM returns the corresponding
values memorized inside.
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The digital-analog converter (DAC) translates the generated values into ana-
log values shown graphically over time in the DAC internal pane3. By changing
the clock frequency, we can change the period of the sine wave.

A.1.3 Internal architecture

The internal architecture of a ROM memory is formally based on what is
called a “Programmable Logic Array” (PLA). The PLA is used in integrated
circuits to conveniently implement combinational logic networks4 of a certain
level of complexity.

The PLA is based on Shannon’s expansion theorem5, which says that any
combinational logic function can be expanded (or decomposed) in terms of a
sum of logical products (normally referred to as “AND-OR networks”).

A PLA is based on two arrays of programmable connections (see the example
in the following figure). The first array, called the “AND Plane”, makes it
possible to connect the network inputs (in direct or negated form) to a group
of AND gates.

The second array, called the “OR Plane”, makes it possible to connect the
ANDs to a group of OR gates that then produce the network outputs.

3 This is a virtual conversion. During the simulation, the output value is only shown
graphically in the pane internal to the component itself.

4 PLAs were developed over the second half of the 1960s and were used industrially
in integrated circuits about a decade later.

5 This theorem was actually stated by George Boole in 1854, in his work, “The
Laws of Thought”. Claude Shannon made mention of this type of expansion in
an article in 1948 and applied it to the synthesis of logic networks, which is why
this theorem carries his name in the literature.
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The example in the figure, which is purposefully less complex, has 2 inputs
(A1,A0), 4 AND logic gates, 4 OR logic gates and 4 outputs (D3..D0).

A PLA network makes it possible to create a large number of combinational
AND-OR functions obtained by electrically connecting the intersections of
the two matrices in an appropriate way. A ROM is a specific kind of PLA
where the AND plane is pre-programmed by the manufacturer to obtain the
standard logic of a binary decoder (see the figure below). Following this, the
constant ‘1’ in the OR plane has also been eliminated.

Pre-wired connections on the AND plane make it so that, for every possible
combination of inputs, only one AND gate activates its output at ‘1’, while
all the others generate a ‘0’. For example, in the network in the figure, the
combination A1A0 = ‘00’ activates the output of the AND gate at the top of
the schematic.

In a ROM with N address lines, the decoder activates only one row of the
network at a time; among the 2N available rows, it activates the one corre-
sponding to the address set at the inputs of the component at that moment.
If we envision the ROM in terms of a value table, as we did previously, it is
easy to see that each row in the table actually corresponds physically to a row
in the OR plane.

To program a location at a certain address, we, therefore, take the correspond-
ing selected row into consideration. Note that, formally, the OR gates have as
many inputs as the number of array rows6.

6 As the number of array rows rises (to the thousands, for example), an OR with
the same number of inputs may seem unfeasible. In actual fact, it is possible to
perform the functions of an OR gate with a specific configuration of circuital
elements (transistors) distributed along all the rows. This allows us to use a
column made up of a simple wire and obtain the functionality of an OR gate.
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In this schematic, all the OR gate inputs are brought up in the array as
columns and intersect all the rows7. So that the value we want for that location
exits from the OR gate output, we need to choose whether to connect the
columns to the row of interest.

If we want an OR gate to generate a ‘1’, we’ll connect one of its inputs to
that row. Otherwise, to generate a ‘0’ that same input will be connected to
constant ‘0’. In so doing, we will find a ‘1’ on the OR gate output under the
columns we have connected to the selected row and a ‘0’ will exit the others.
The other rows do not disturb the process because they are inactive and only
produce ‘0s’ for the other OR inputs.

In the example shown in the figure below, the array of the OR plane is pro-
grammed to generate the mathematical function:

D = A2

For example, the square of 3 is 9, so if we set A1A0 = 112 = 310, the output
should generate D3..D0 = 10012 = 910. The corresponding row is the lowest
and it has been connected as shown in the figure.

Let’s look at the input of every OR gate that is farthest to the right in the
figure. The OR gates corresponding to the bits that have to be at ‘1’ (D3 and
D0) have been connected to the row corresponding to the address A1A0 =
112 (shown as active) through this input. As regards the other two OR gates,
that same input has been connected to ‘0’ (at the top of the figure).

As shown in the simulation in the figure, A1A0 = 112 and all the rows of the
array are at ‘0’, while only the selected row is at ‘1’. The only outputs at ‘1’
are from the OR gates connected to it.

7 To better organize the structure of a large memory chip, “arrays of arrays” are
used and thus, more complex address decoders. In this book, however, we will
not delve into these techniques.
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There is a similar rationale for the middle rows. However, since the first row
has to generate all the outputs at ‘0’, none of the ORs has been connected.

As mentioned before, programming these connections in reality depends on
the technology behind the specific component in use. In any case, no designer
is required to go into the level of detail of the individual connections, as was
done here for the purpose of further study. There is software designed for this
purpose. It is generally produced by the manufacturers of the components,
and this allows us to start from a formal description of the contents.

Deeds offers the ROM Editor/Programmer, as shown on page 559. This tool
allows us to program the memory even by loading the contents of a specific
text file with the “.drs” extension (“Deeds ROM Source file”). The file can
also be generated in order to export the contents of the memory.

Let’s take the ROM of the sine wave generator presented on page 559 as an
example. Below, we show how the corresponding file looks inside the ROM/Ed-
itor Programmer as it’s ready to be exported.

The first line states the type of ROM the file was exported from (“#R”), while
the second provides a simple explanatory comment (“#-”). The line starting
with “#A” states that the values have been read as of address ‘0000h’, while
the next line (“#B”) reports that those values are expressed in binary.

Finally, we have the list of binary
numbers separated by spaces and
read from their locations.

For a complete description of the
options offered by the ROM/Ed-
itor Programmer, consult the
ROM/Editor Programmer guide,
available in the context menu
highlighted by the yellow arrow
in the figure at the right.
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A.2 RAM memory

The term Random Access Memory (RAM) has its origins in history. It was
defined as such in opposition to Sequential Access Memory (SAM), which at
the time came in the form of perforated paper tape and magnetic tape.

A magnetic tape, for example, does not allow for immediate access to a specific
group of information. To access an area of data, one must first fast forward
the tape up to the position where the first part of the information is and then
read the positions one by one. If the current position of the tape is far from
that of the area of the data that needs to be accessed, this operation can take
several minutes to execute.

RAM, however, makes it possible to access any data area in a constant amount
of time independently of the internal state of the memory. This access is
allowed both for read and write operations, which is why it is also called
Read Write Memory (RWM).

As mentioned in Chapter 1 on page 75, RAM memory can be considered a
group of parallel registers, each of which can be loaded with a number.

Individual registers are called memory locations (or cells) and a RAM can
contain a very high number of locations (from a few hundred to a few billion,
depending on the component). Each location is identified by an address, as in
the case of ROMs.

From a circuital perspective, there are mainly two different types of RAM
memory: “static” and “dynamic”. Static RAM (SRAM) stores information
by using a flip-flop for each bit. Hereinafter, we will always refer to static
memory.

The photo on the right shows a historic example of
one of the first static RAM memories available on the
market, the MM2114, which contained 1024 locations
of 4 bits each.

Dynamic memory (DRAM, Dynamic RAM) gets its name because individual
bits are stored through capacitors that are charged or discharged according to
the desired logic level. Capacitors are actually represented by the capacity of
transistors, which are normally defined as “parasites” but here are purpose-
fully used to register individual bits. Since these are not ideal capacitors, they
tend to discharge, so they need to be periodically “refreshed” with the last
value stored, so that it is not lost.

Although dynamic memory adds to the complexity of refresh circuits, they
require many fewer transistors8 to memorize bits, than static memory, which
uses flip-flops.

8 In this book, we will not examine the aspects of microelectronics that allow for
this type of storage, or the complex circuits required to execute a refresh.
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For this reason and for reasons of cost, they are used where
very large memory is needed, in personal computers for
example (the photo on the left shows a 4-GByte dynamic
memory module).

Aside from these distinctions, there are forms of RAM
memory that allow for reading and writing in multiple lo-
cations at a time. This is called “multiple port” memory,
often used in graphics systems. We, however, will deal with
the more common “single port” memory that allows for
accessing only one location at a time.

A.2.1 Operating principle

As mentioned before, we will focus on the logical
and functional aspects of RAM memory and to do
this, the static, single port forms lend themselves
better to a linear discussion.

As we saw in Chapter 1 (on page 75), RAM mem-
ory can be ideally represented in the form of a ta-
ble, where each block is identified by an address,
as shown in the figure on the right.

When the system is turned on, each location con-
tains an indeterminate value. After that, only the
locations where we will write something will store
known values.

In the example in this figure, the RAM has 16 address wires (A15..A0) and
contains 216 locations (64K) of one byte each. Therefore, the location ad-
dresses are between 0000h and FFFFh. The RAM also contains 8 input lines
(DI7..DI0) for the data to be memorized and 8 output lines (DO7..DO0) for
reading the data.

The WE (Write Enable) line makes it possible to command the writing, while
the CS (Chip select) input enables the component. The clock CK line will
be present if the specific RAM in use is “synchronous” and will not if it is
“asynchronous”.

Before storing a number in the RAM, we must select the address of the lo-
cation to use and submit it to the RAM on wires A15..A0. Then we set the
number to write in the selected location on inputs DI7..DI0 and activate CS.
In asynchronous RAMs, writing is ordered through a pulse on the WE com-
mand. In synchronous RAMs, we still need to activate WE but writing is
executed on the active edge of CK.

We can re-read the number contained in a location by providing its address on
lines A15..A0 and activating CS. The content of the location appears directly
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at outputs DO7..DO0, if the RAM is asynchronous. For synchronous memory,
after providing the address, it is necessary to wait for the next edge of the
clock CK to get the number, as with writing.

A.2.2 Internal architecture

Let’s examine how we can manage a group of cells in-
side the memory by gradually building a static, syn-
chronous RAM made up of only 4 locations. With
this simplification, the schematic will present the
general principles of its architecture without being
too difficult to interpret.

The figure on the right shows an 8-bit parallel reg-
ister. For the writing operation, the number to store
must be presented to inputs P7..P0 and WE, the
write enable command must be activated. WE is con-
nected directly to register enable input E.

The write operation is done on the
rising edge of the clock CK. From
then on, the stored number will be
available on outputs Q7..Q0.

Note that input CL is not connected
to a reset line, so to initialize the reg-
ister to a known value, we need to ex-
plicitly write a value in it (this choice
is to replicate the behavior of RAMs,
which do not have a reset input).

Now, let’s take four of these registers
(see the figure on the left) and con-
nect all their clock inputs and data
input lines in parallel.

When we use the Data IN bus to pro-
vide the number to write, that num-
ber will be potentially available to all
the registers.

However, we will write only in one
register at a time. To do this, we will
activate the enable line of the chosen
register only and keep all the others
inactive.

To address 4 locations, we need 2 address lines. Accordingly, we introduce
lines A1 and A0, which we will send to a 2→ 4 decoder with enable (see the
following figure).
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Only one of the outputs of the decoder will be activated based on the corre-
sponding address provided. So, we have connected decoder outputs Y3..Y0 to
the registers’ E write enable inputs. It will be useful to use the decoder enable
(EN) as an overall write enable (WE) line.

When done in this way, enabling individual registers depends on the address
set in A1A0 and whether the WE line is activated. The actual write operation,
as mentioned before, is done on the rising edge of the clock.

To finish building our simplified example of a RAM, we now need to add the
circuitry required to read locations.

To do this, we simply add a 4-channel multiplexer and connect its selection
inputs to address lines A1 and A0 (see the following figure).

In the way that it is set, this network allows for an asynchronous read opera-
tion. This means that it is enough to provide the address to get the content of
the desired location on the Data OUT output, without waiting for the rising
edge of the clock.
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In the simulation screenshot above, a write operation has just concluded. The
set address is A1A0 = ‘11’, and WE is active.

Here, the network behavior is captured right after the rising edge of the clock
and the number on the Data IN input has been stored in the selected register
(the lowest one in the figure). The Data OUT output has the number that has
just been written, read from the selected register.

Following the same design criterion, we’ll now show a larger synchronous
RAM (but a far cry from those of commercial circuits). This RAM has 64
8-bit locations and has external connections similar to the previous RAM (see
the following two figures).
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Here there are 6 address lines (A5..A0). A chip select CS for general enable is
implemented9. The schematic is divided into two parts and is shown by way
of example, in that it is full of barely legible detail, like the pages of a book10.

Different from the previous example, here the locations are organized in an 8-
row, 8-column rectangular array, similar to real components. This organization
optimizes the available space on the chip. The selection of an individual cell
is defined by the intersection between the row and column where it is found.

9 In a real device, deactivating the CS also brings the chip to low consumption
modality where data are not accessible from the outside but their storage is
guaranteed.

10 For a detailed analysis, this network as well as all the others is available in the
digital contents of the book.
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Rather than using one single 6→ 64 decoder, here, we use a (3→ 8) “row
decoder” that enables the eight (3→ 8) “column decoders” one at a time. For
the selected row, it is the column decoder that enables the register we need.

The second part of the schematic (the figure above) at the bottom left has
the row decoder. As shown (enlarged) in the following figure, the selection of
the outputs is given by address lines A5, A4 and A3, and is enabled by inputs
WE and CS.
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The 8 outputs of the decoder, in turn, enable the 8 column decoders, one for
each row, so we can say that address lines A5, A4 and A3 select the row. The
column decoders, driven by the remaining address lines, select the register
positioned on the column specified by A2, A1 and A0.

The following figure shows an enlarged detail of one of the column decoders.
For easy readability, only 4 of the 8 registers in the row are shown, but the 8
decoder outputs are connected to the E enables of all 8 registers.

In sum, for a given address A5..A0, only one row will be selected (through
lines A5, A4 and A3) and inside of that, only one register (with lines A2, A1
and A0). In the writing phase, the activation of WE will be only routed to
the E enable of the addressed register.

For what regards reading the data stored on the register, as shown in the
following figure, every row has a column multiplexer whose selection is given
by address lines A2, A1 and A0. The content of the desired register is therefore
available at the output of the column multiplexer.
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All the column multiplexers converge in the row multiplexer (see the figure
below), which selects the content coming from the rows based on lines A5,
A4 and A3. The output of the multiplexer is then brought out of the RAM
allowing for the data stored in the addressed register to be read.

The decoders and multiplexers here have made it possible to describe the
RAM architecture in functional terms11.

The architecture examined in these pages is not the only possible one; there are
synchronous RAM memories with different design choices inside. For example,
there are memories that have a register to store the address provided from
the outside.

Also, memory cells are generally designed with simpler flip-flops than those
adopted here, so it is possible to save on the overall number of transistors
required. The registers that we have used in these examples employ “PET”
(Positive Edge Triggered) flip-flops, while real RAMs have “D-latch” flip-
flops, which are much smaller and more economical because they use fewer
transistors.

11 In a real component the decoders and multiplexers are replaced by special mi-
croelectronic solutions that make it possible to reduce the number of wires and
transistors while performing the same functions.
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A.3 Bidirectional bus connections

Let’s assume we have multiple devices that need to transfer data to a specific
destination. In the example in the following figure, the devices are repre-
sented by simple inputs (IN3..IN0), and the destination by the OUT output,
for simplicity’s sake. Based on the selection set by lines S1 and S0, a 4→ 1
multiplexer allows us to select which device is connected to the destination at
a given moment.

This solution is very general and widely used. Still, when there is a bus con-
nection and a large number of devices, this method becomes costly. This is
particularly true if the connections are not inside of a single chip but link
physically distinct chips found on different boards.

Let’s look at the following example where the devices transfer data through
their 8-wire outputs (represented as “busses”).

Keep in mind that the multiplexer used here with bus-type connections is built
internally with eight 4→ 1 multiplexers (like that of the previous example),
one for each of the wires the bus is made of.

Let’s determine the number of wires necessary. We have 4 connections with 8
wires each entering the multiplexer and one 8-wire connection in the output
plus the two selection wires. Overall, we have 42 wires.

If we wanted to raise the number of devices in the design, we would need to
add an 8-wire bus for each additional device. However, we would also need a
multiplexer with more channels and this would entail redesigning the board
(or boards) the network is made on.
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It would be preferable to design the system so as to save on the number
of wires. This would reduce costs and keep flexibility and modularity so we
would not have to redesign the interconnecting parts every time we need to
add elements to the system.

If we use a special type of component, a “tri-state” buffer, we can reduce the
number of wires we need to connect the chip to the different boards at the cost
of slowing connection speed. With this component, multiple devices can share
the same bunch of wires (a bus) to transfer information in both directions
where needed, giving us “bidirectional” connections.

A.3.1 Tri-state buffers

A tri-state buffer is a special type of logic device that works like a normal
buffer when enabled, and electrically disconnects its outputs when it is not.
In the following figure, the left side shows the tri-state buffer symbol while
the right shows its functional equivalent.

The figure shows an E enable input, normally drawn from the side with respect
to the path. When the tri-state buffer output is disabled (E = ‘0’), this brings
it to a state of “high impedance” (’High-Z’, or simply ‘Z’). It behaves as if
there were an open switch at the output of a normal buffer12. When E is
active, however, output buffering is enabled (the switch is closed).

The truth table of the tri-state buffer (including state ‘Z’) is shown below.

E IN OUT Function

0 - ‘Z’ ‘High-Z’ (output disconnected)

1 0 0 OUT = IN (identity)

1 1 1

Here below are three examples of tri-state buffer operations, using Deeds and
the “animation ” simulation.

In the example on the left, the E enable is not active, so the output is discon-
nected and the simulator shows the symbol ‘Z’.

12 The switching is done electronically through a control of the transistors that drive
the buffer output.
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In the center and right examples, E = ‘1’, so the output copies the logic level
in the input as in a normal buffer (notice the component shows a different
color when the enable is active during the simulation).

A tri-state buffer by itself is not very useful, when employed alone. However,
when a certain number of them are used together to reproduce the logical
functionality of a multiplexer, their advantages become clear.

The following figure shows the initial example of four devices that transfer
their data to a destination that is adapted to tri-state buffers.

As before, the devices are represented by inputs IN3..IN0, and the destination
by the OUT output. Each of the devices can connect with the destination
through its own tri-state buffer if it is enabled by the corresponding control
(C3..C0).

We will soon see the criteria used to drive these control lines. For now, it
should be noted that we will activate them only once, as in the example in
the figure. Here, we see that OUT copies IN2 in that control line C2 is active
while the others are not.

It would make no sense to activate more than one as it would cause an electri-
cal conflict between the buffer outputs, especially if they tried to set different
logical values on the line.

Let’s start to look at an important property of this solution that uses tri-state
buffers. The output can be connected at any point of the shared connection.
While using the multiplexer, the output is generated downstream the compo-
nent itself.

If we look at the figure above, the information can be produced by the device
farthest to the right (IN0) and received by the left side of the connection or
generated by the device farthest on the left (IN3) and received by the right
side. In other words, this solution allows for a “bidirectional connection”; it
makes it possible to transmit data along the line in both directions.

Furthermore, it is clear that this solution saves on the number of wires needed
since we use only one common wire rather than one wire for each device.
This advantage will become important when the number of devices grows,
especially when there is a bus-type data connection.
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A.3.2 Tri-state buffers and busses

To connect a bus, we use as many tri-state buffers as the wires it has, and
the E enables are connected together (see the left of the following figure). For
schematics, it is convenient to use a component with bus-type connections
that integrates them into a single symbol (on the right).

The next figure shows four devices that transfer data to a destination through
their 8-wire output busses. This time, however, we employ the tri-state bus-
type buffer just introduced.

About this example, we can draw the same observations that we have done
in the case of the single-wire connection network seen beforehand. The con-
siderations about bi-directional capabilities and the savings in terms of the
number of wires in use are noteworthy. As we can see in the figure above,
OUT copies IN2 because control line C2 is active while the others are not.

At this point, we have to consider how to manage the selection of the single
device ensuring that all the others are disabled.

The example on the following page has 4 units shown inside blue dotted lines.
They share a common 8-wire bus to transfer data to the OUT output. Each
unit is connected to the bus through a bus-type tri-state buffer. The buffer
enables are shown by the C3, C2, C1 and C0 one-bit displays.

Selection lines S1 and S0 are accessible to all the units and control which one
will be enabled. Unlike the previous examples, however, each one’s tri-state
enable is delegated to its own units with the insertion of a private decoder
in each one. In every respect, S1 and S0 become the “address” lines of the
system. So, every unit has its own, unique “address” attributed to it.
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In the simulation screen-
shot shown in the figure,
S1S0 = ‘10’, so unit IN2 is
activated. In fact, the de-
coder in unit IN2 is con-
nected so as to recognize
the selection S2S1 = ‘10’
and activate line C2.

The decoders of the other
units recognize the other
combinations but not this
one, so the only enabled tri-
state buffer is the one for
unit IN2. Therefore, OUT
copies the values generated
by IN2 to the bus.

If we raise the number S
of address lines, we will be
able to connect many more
units (up to N = 2S) to the
bus.

We will then have what
we call system “modular-
ity” in the sense that we
can add or remove units
(e.g. through connectors)
without having to change
the general architecture,
once a standard of bus con-
nections is defined.

The network shown here
receives the selection from
the outside but in real sys-
tems, it is generated by the
system itself. To achieve
this, one common option
used in microcomputers for
example, is to assign the
special role of “master” of
communication to one of
the modules.

The other units (typically called “slaves”) are controlled by the master and
respond to its commands. Generally speaking, each of the modules could be
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designed not only to send data but also to receive them, thus allowing for a
multi-directional exchange of information among the units facing the bus.

Since the bus is a single, shared resource, if two units are exchanging data
with each other, the bus will be occupied and it will be impossible to manage
another data exchange at the same time. Therefore, data exchanges must be
executed one at a time.

Now, let’s look at the schematic of a master, regarding the mere control over
communication on the bus (see the figure below).

As mentioned, it is the master that generates the selection (the address) of the
module to enable from time to time. It controls lines S1S0 that run alongside
the bus (on the right side of the figure). On the left, the two switches S1
and S0 symbolize the control of those lines, which in a real application are
produced by a logic network that sequences the operations.

At the center, we see the tri-state buffer that makes it possible to transmit
data provided by the master (DATA TX) over the bus. These data are received
by the selected unit. To the side, we find the parallel register, introduced to
receive and store (DATA RX) the information from the bus.

From the perspective of the master, an operation that transfers a number to
the selected unit is called a “write” operation. Similarly, a “read” operation
is the opposite: a number coming from the addressed unit that is acquired by
the master.

To assure that the read and write operations are carried out in a mutually
exclusive way, we add two more lines to the bus, R (Read) and W (Write),
which are also generated by the master. The READ and WRITE buttons
shown in the figure represent the lines generated by the sequencing logic in a
real system.
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Finally, so that all the operations can be carried out synchronously, we add a
CK line to the bus. This will allow all the units to synchronize their operations
with the clock of the master unit.

Now, let’s turn our attention to the units that are under the command of the
master. The following figure shows the slave unit designed to be enabled by
address S1S0 = ‘11’.

On the left we see the address decoder. It selects the unit by activating internal
line C3 when the master generates S1S0 at ‘11’. However, this selection by
itself is not enough since the master needs to declare if it wants the read or
the write operation to be carried out (by activating line R or W).

The schematic also shows a tri-state buffer and a parallel register, which have
the same function as those inside the master except that their enable lines are
activated in the presence of the selection of the unit and its respective R or
W signal.

The timing diagram on the
left shows the signal sequence
for the write operation.

Let’s assume that the selec-
tion generated by the mas-
ter is S1S0 = ‘11’, maintained
constant along the time inter-
val considered here.

At clock edge 1, the mas-
ter activates WRITE, which
propagates on line W and
reaches all the units.
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WRITE also enables the tri-state buffer in the master, so the BUS that was
in Hi-Z, is now defined and copies the number set on DATA TX (25h, in the
example).

In response to line W, only the selected receiving unit activates internal line
WE3, enabling the write operation in the correct register. So, the number is
stored in the destination on clock edge 2.

The following figure shows the signal sequence for the read operation.

On clock edge 1, the mas-
ter activates the READ line,
which locally enables the
write operation in the mas-
ter’s register. This is the se-
lected destination of the data
transfer.

The read signal propagates
all the units on BUS line R
and, of course, reaches the se-
lected unit, which activates
the RD3 line internally.

The RD3 line enables its own tri-state buffer and therefore copies the value on
DATA3(RD) to the BUS. The master is the only network where the writing
on its own register is enabled, so on clock edge 2, the number will be stored
there, thus arriving at the desired destination.

On the following page, the schematic represents the complete system in our
example with one master (at the top) and the four slave units.

In the timing diagrams studied here, we see that there are time intervals when
the BUS is not driven by any of the tri-state buffers since they are all disabled
in the Hi-Z state. In these intervals, the logic value of the bus lines is indefinite
(indicated as Hi-Z in the figures), because it is not set by any active device13.

In conclusion, let’s make mention of another type of
component, the bidirectional tri-state buffer, shown
in the figure at the left.

It is made up of two buffers connected from opposite
ends and enabled by lines E and DIR.

When E is active, DIR sets the transfer direction. B copies A if DIR = ‘1’,
otherwise A copies B. If E = ‘0’, A and B are unconnected (Hi-Z). This buffer
is useful when we want to connect two bidirectional buses together.

13 In the time intervals when it is in Hi-Z, the bus of a real system tends to assume
values depending on the physical parameters and the design of the bus itself,
which should be considered unknown from a logical perspective.
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A.3.3 Tri-state memories

A bidirectional bus is often used to connect memory devices. The following
figure on the left shows a ROM memory device (4K x 8) that is compatible
with a bidirectional-type connection.

The OE (Output Enable) line commands the activation of data outputs
D7..D0, which in this component are tri-state types. The right hand side
of the figure shows an equivalent network, in which we use a ROM with non-
tri-state outputs, like those examined in Section A.1. A tri-state buffer has
been added to the memory in series at the data outputs.

The buffer enable depends on the AND between OE and CS; if the device is
enabled (CS = ‘1’), setting OE = ‘1’ as well, the tri-states of outputs D7..D0
will be enabled, allowing us to read data from the memory. In Chapter 2 we
saw an example of how it is used (see page 150).

In the following figure on the left, we show a (4K x 8) RAM memory device.
This component is also designed to be used with a bidirectional data bus.
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In addition to control lines CS, WE and CK, explained in Section A.2, this
component also has the OE enable.

On the right side of the figure is the equivalent schematic of the component,
starting from a RAM memory that is the same size but has separate inputs and
outputs (as in Section A.2). As with the ROM, we see a tri-state buffer added
in series at the data outputs. Nevertheless, we also have a direct connection
of lines D7..D0 to the memory input lines of the same name.

Due to the fact that a RAM has the write functionality, output enable does
not only depend on OE and CS but also on the WE line. The tri-state buffer
is enabled only if write is inactive (WE = ‘0’), i.e., only if we are in memory
data read mode.

For writing, the number to write comes from the bus. To be acquired by the
memory, through inputs D7..D0, the tri-state buffer output lines have to be
disconnected (put in Hi-Z). We have seen an example of a RAM application
with a bidirectional bus in Chapter 2, on page 151.



B

Programmable computing networks:
Schematics and tables

B.1 The Mp8A computing network

In this section, we report the table of instructions and the complete schematic
of the Mp8A computing network described in Section 1.2.4.

B.1.1 Table of instructions

Mnemonic Machine Code

P1 P0 END F2 F1 F0 S1 S0 (hex)

IN A,OP0 0 0 0 1 1 1 1 1 1Fh

IN A,OP1 0 1 0 1 1 1 1 1 5Fh

IN A,OP2 1 0 0 1 1 1 1 1 9Fh

IN A,OP3 1 1 0 1 1 1 1 1 DFh

ADD A,OP0 0 0 0 0 0 0 1 1 03h

ADD A,OP1 0 1 0 0 0 0 1 1 43h

ADD A,OP2 1 0 0 0 0 0 1 1 83h

ADD A,OP3 1 1 0 0 0 0 1 1 C3h

SUB A,OP0 0 0 0 0 0 1 1 1 07h

SUB A,OP1 0 1 0 0 0 1 1 1 47h

SUB A,OP2 1 0 0 0 0 1 1 1 87h

SUB A,OP3 1 1 0 0 0 1 1 1 C7h

(cont.)

G. Donzellini et al., Introduction to Microprocessor-Based Systems Design,
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Mnemonic Machine Code

P1 P0 END F2 F1 F0 S1 S0 (hex)

AND A,OP0 0 0 0 0 1 0 1 1 0Bh

AND A,OP1 0 1 0 0 1 0 1 1 4Bh

AND A,OP2 1 0 0 0 1 0 1 1 8Bh

AND A,OP3 1 1 0 0 1 0 1 1 CBh

OR A,OP0 0 0 0 0 1 1 1 1 0Fh

OR A,OP1 0 1 0 0 1 1 1 1 4Fh

OR A,OP2 1 0 0 0 1 1 1 1 8Fh

OR A,OP3 1 1 0 0 1 1 1 1 CFh

NOT A 0 0 0 1 0 0 1 1 13h

SRL A 0 0 0 0 0 0 0 1 01h

SLL A 0 0 0 0 0 0 1 0 02h

NOP 0 0 0 0 0 0 0 0 00h

HALT 0 0 1 0 0 0 0 0 20h
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B.1.2 The schematic of the Mp8A computing network
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B.2 The Mp8B computing network

In this section, we report the table of instructions and the corresponding
microprograms, as well as the complete schematic of the Mp8B computing
network described at the start of Section 1.3. This network is the first example
of the use of a microprogrammed sequencer.

B.2.1 Table of instructions and the correlated microprograms

Mnemonic Machine Code Microprogram

NOP 00h 1100.0000.0000.0000

HALT 01h,01h 1000.0000.0000.0000

ADD A,OP0 04h 1100.0000.0001.1000

ADD A,OP1 05h 1100.0000.0001.1010

ADD A,OP2 06h 1100.0000.0001.1100

ADD A,OP3 07h 1100.0000.0001.1110

SUB A,OP0 08h 1100.0000.0011.1000

SUB A,OP1 09h 1100.0000.0011.1010

SUB A,OP2 0Ah 1100.0000.0011.1100

SUB A,OP3 0Bh 1100.0000.0011.1110

AND A,OP0 0Ch 1100.0000.0101.1000

AND A,OP1 0Dh 1100.0000.0101.1010

AND A,OP2 0Eh 1100.0000.0101.1100

AND A,OP3 0Fh 1100.0000.0101.1110

OR A,OP0 10h 1100.0000.0111.1000

OR A,OP1 11h 1100.0000.0111.1010

OR A,OP2 12h 1100.0000.0111.1100

OR A,OP3 13h 1100.0000.0111.1110

NOT A 14h 1100.0000.1001.1000

IN A,OP0 1Ch 1100.0000.1111.1000

IN A,OP1 1Dh 1100.0000.1111.1010

IN A,OP2 1Eh 1100.0000.1111.1100

IN A,OP3 1Fh 1100.0000.1111.1110

SRL A 20h 1100.0000.0000.1000

SLL A 21h 1100.0000.0001.0000
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B.2.2 The schematic of the Mp8B computing network
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B.3 The Mp8C computing network

In this section, we report the table of instructions and the corresponding
microprograms, as well as the complete schematic of the Mp8C computing
network described at the end of Section 1.4. This network adds the Flag
Register and the new microprogrammed sequencer, which is able to execute
conditional and unconditional jumps, to the Mp8B.

B.3.1 Table of instructions and the correlated microprograms

Mnemonic Machine Code Microprogram

NOP 00h 1100.0000.0000.0000

HALT 01h,01h 1000.0000.0000.0000

ADD A,OP0 04h 1100.0100.0001.1000

ADD A,OP1 05h 1100.0100.0001.1010

ADD A,OP2 06h 1100.0100.0001.1100

ADD A,OP3 07h 1100.0100.0001.1110

SUB A,OP0 08h 1100.0100.0011.1000

SUB A,OP1 09h 1100.0100.0011.1010

SUB A,OP2 0Ah 1100.0100.0011.1100

SUB A,OP3 0Bh 1100.0100.0011.1110

AND A,OP0 0Ch 1100.0100.0101.1000

AND A,OP1 0Dh 1100.0100.0101.1010

AND A,OP2 0Eh 1100.0100.0101.1100

AND A,OP3 0Fh 1100.0100.0101.1110

OR A,OP0 10h 1100.0100.0111.1000

OR A,OP1 11h 1100.0100.0111.1010

OR A,OP2 12h 1100.0100.0111.1100

OR A,OP3 13h 1100.0100.0111.1110

NOT A 14h 1100.0100.1001.1000

IN A,OP0 1Ch 1100.0000.1111.1000

IN A,OP1 1Dh 1100.0000.1111.1010

IN A,OP2 1Eh 1100.0000.1111.1100

IN A,OP3 1Fh 1100.0000.1111.1110

(cont.)
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Mnemonic Machine Code Microprogram

SRL A 20h 1100.0100.1100.1000

SLL A 21h 1100.0100.1101.0000

JP <address> 22h 0000.1000.0000.0000

1100.0000.0000.0000

JP Z, <address> 24h 0110.0000.0000.0000

1100.0000.0000.0000

JP NZ, <address> 26h 0110.1000.0000.0000

1100.0000.0000.0000

JP C, <address> 28h 0111.0000.0000.0000

1100.0000.0000.0000

JP NC, <address> 2Ah 0111.1000.0000.0000

1100.0000.0000.0000

CP A,OP0 30h 1100.0100.0010.0000

CP A,OP1 31h 1100.0100.0010.0010

CP A,OP2 32h 1100.0100.0010.0100

CP A,OP3 33h 1100.0100.0010.0110
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B.3.2 The schematic of the Mp8C computing network
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B.4 The Mp8D computing network

In this section, we report the table of instructions and the corresponding
microprograms, as well as the complete schematic of the Mp8D computing
network described in Section 1.5. This network adds two output ports to the
Mp8C.

B.4.1 Table of instructions and the correlated microprograms

Mnemonic Machine Code Microprogram

NOP 00h 1100.0000.0000.0000

HALT 01h,01h 1000.0000.0000.0000

ADD A,OP0 04h 1100.0100.0001.1000

ADD A,OP1 05h 1100.0100.0001.1010

ADD A,OP2 06h 1100.0100.0001.1100

ADD A,OP3 07h 1100.0100.0001.1110

SUB A,OP0 08h 1100.0100.0011.1000

SUB A,OP1 09h 1100.0100.0011.1010

SUB A,OP2 0Ah 1100.0100.0011.1100

SUB A,OP3 0Bh 1100.0100.0011.1110

AND A,OP0 0Ch 1100.0100.0101.1000

AND A,OP1 0Dh 1100.0100.0101.1010

AND A,OP2 0Eh 1100.0100.0101.1100

AND A,OP3 0Fh 1100.0100.0101.1110

OR A,OP0 10h 1100.0100.0111.1000

OR A,OP1 11h 1100.0100.0111.1010

OR A,OP2 12h 1100.0100.0111.1100

OR A,OP3 13h 1100.0100.0111.1110

NOT A 14h 1100.0100.1001.1000

IN A,OP0 1Ch 1100.0000.1111.1000

IN A,OP1 1Dh 1100.0000.1111.1010

IN A,OP2 1Eh 1100.0000.1111.1100

IN A,OP3 1Fh 1100.0000.1111.1110

SRL A 20h 1100.0100.1100.1000

SLL A 21h 1100.0100.1101.0000

(cont.)



594 B Programmable computing networks: Schematics and tables

Mnemonic Machine Code Microprogram

JP <address> 22h 0000.1000.0000.0000

1100.0000.0000.0000

JP Z, <address> 24h 0110.0000.0000.0000

1100.0000.0000.0000

JP NZ, <address> 26h 0110.1000.0000.0000

1100.0000.0000.0000

JP C, <address> 28h 0111.0000.0000.0000

1100.0000.0000.0000

JP NC, <address> 2Ah 0111.1000.0000.0000

1100.0000.0000.0000

CP A,OP0 30h 1100.0100.0010.0000

CP A,OP1 31h 1100.0100.0010.0010

CP A,OP2 32h 1100.0100.0010.0100

CP A,OP3 33h 1100.0100.0010.0110

OUT PORT0,A 34h 1100.0001.1100.0000

OUT PORT1,A 35h 1100.0010.1100.0000
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B.4.2 The schematic of the Mp8D computing network
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B.5 The Mp8E computing network

In this section, we report the table of instructions and the corresponding
microprograms, as well as the complete schematic of the overall computing
network in its final version (Mp8E), described in Section 1.6. This network
can handle variables and constants thanks to the addition of RAM and to the
revision of the data path.

B.5.1 Table of instructions and the correlated microprograms

Mnemonic Machine Code Microprogram

NOP 00h 1100.0000.0000.0000

HALT 01h,01h 1000.0000.0000.0000

ADD A,OP0 04h 1100.0100.0001.1000

ADD A,OP1 05h 1100.0100.0001.1010

ADD A,<const> 40h 0100.0100.0001.1110

1100.0000.0000.0000

ADD A,(address) 4Ch 0100.0000.0000.0000

1100.0100.0001.1100

SUB A,OP0 08h 1100.0100.0011.1000

SUB A,OP1 09h 1100.0100.0011.1010

SUB A,<const> 42h 0100.0100.0011.1110

1100.0000.0000.0000

SUB A,(address) 4Eh 0100.0000.0000.0000

1100.0100.0011.1100

AND A,OP0 0Ch 1100.0100.0101.1000

AND A,OP1 0Dh 1100.0100.0101.1010

AND A,<const> 44h 0100.0100.0101.1110

1100.0000.0000.0000

AND A,(address) 50h 0100.0000.0000.0000

1100.0100.0101.1100

OR A,OP0 10h 1100.0100.0111.1000

OR A,OP1 11h 1100.0100.0111.1010

OR A,<const> 46h 0100.0100.0111.1110

1100.0000.0000.0000

OR A,(address) 52h 0100.0000.0000.0000

1100.0100.0111.1100

NOT A 14h 1100.0100.1001.1000

(cont.)
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Mnemonic Machine Code Microprogram

IN A,OP0 1Ch 1100.0000.1111.1000

IN A,OP1 1Dh 1100.0000.1111.1010

IN (address),OP0 56h 0100.0000.1110.0001

1100.0000.0000.0000

IN (address),OP1 58h 0100.0000.1110.0011

1100.0000.0000.0000

SRL A 20h 1100.0100.1100.1000

SLL A 21h 1100.0100.1101.0000

JP <address> 22h 0000.1000.0000.0000

1100.0000.0000.0000

JP Z, <address> 24h 0110.0000.0000.0000

1100.0000.0000.0000

JP NZ, <address> 26h 0110.1000.0000.0000

1100.0000.0000.0000

JP C, <address> 28h 0111.0000.0000.0000

1100.0000.0000.0000

JP NC, <address> 2Ah 0111.1000.0000.0000

1100.0000.0000.0000

CP A,OP0 30h 1100.0100.0010.0000

CP A,OP1 31h 1100.0100.0010.0010

CP A,<const> 4Ah 0100.0100.0010.0110

1100.0000.0000.0000

CP A,(address) 5Ah 0100.0000.0000.0000

1100.0100.0010.0100

OUT PORT0,A 34h 1100.0001.1100.0000

OUT PORT0,(address) 5Ch 0100.0000.0000.0000

1100.0001.1110.0100

OUT PORT1,A 35h 1100.0010.1100.0000

OUT PORT1,(address) 5Eh 0100.0000.0000.0000

1100.0010.1110.0100

LD (<address>),A 38h 0100.0000.1100.0001

1100.0000.0000.0000

LD A,(<address>) 3Ah 0100.0000.0000.0000

1100.0000.1111.1100

LD A,<const> 3Dh 0100.0000.1111.1110

1100.0000.0000.0000
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B.5.2 The schematic of the Mp8E computing network



C

DMC8 instruction set tables

This appendix presents, grouped by category, the DMC8 microprocessor’s
tables of the instruction set.

Meanings of the column headers of the tables (from left to right):

Header Meaning

Mnemonic The assembly mnemonic code of the instruction.

Symbolic

operation The operation executed by the instruction, symbolically represented.

Flags The flags affected according to the operation result (see below the

summary of flag operation).

Opcode The operation code of the instruction, in binary.

Hex The operation code of the instruction, in hex (when unique).

#B The number of bytes of the instruction.

#M The number of machine cycles of the instruction.

#K The number of clock cycles of the instruction.

Comments Any comments

Summary of flag operation:

Flag Name Operation

S Sign flag S = 1 if the MSB of the result is one.

Z Zero flag Z = 1 if the result of the operation is zero.

H Half-Carry flag H = 1 if the add or subtract operation produced a

carry into (or borrow from) bit 4 of the accumulator.

P/V Parity/Overflow flag Parity (P) and Overflow (V) share the same flag.

For logical operations, P = 1 if the result parity is

even, P = 0 if it is odd. For arithmetic operations,

V = 1 if the result produces an overflow.

N Add/Subtract flag N = 1 if the previous operation was a subtract.

C Carry flag C = 1 if the operation produced a carry from the

MSB of the operand or result

G. Donzellini et al., Introduction to Microprocessor-Based Systems Design,
https://doi.org/10.1007/978-3-030-87344-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
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C.1 Data transfer instructions (8-bit)

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

LD r,r’ r ← r’ • • • • • • 01 r r’ 1 1 4
r,r’ Reg.

000 B

001 C

010 D

011 E

100 H

101 L

111 A

LD r,n r ← n • • • • • • 00 r 110 2 2 7

← n →
LD r,(HL) r ← (HL) • • • • • • 01 r 110 1 2 7

LD r,(IX+d) r ← (IX+d) • • • • • • 11 011 101 DD 3 5 19

01 r 110

← d →
LD r,(IY+d) r ← (IY+d) • • • • • • 11 111 101 FD 3 5 19

01 r 110

← d →
LD (HL),r (HL) ← r • • • • • • 01 110 r 1 2 7

LD (IX+d),r (IX+d) ← r • • • • • • 11 011 101 DD 3 5 19

01 110 r

← d →
LD (IY+d),r (IY+d) ← r • • • • • • 11 111 101 FD 3 5 19

01 110 r

← d →
LD (HL),n (HL) ← n • • • • • • 00 110 110 36 2 3 10

← n →
LD (IX+d),n (IX+d) ← n • • • • • • 11 011 101 DD 4 5 19

00 110 110 36

← d →
← n →

LD (IY+d),n (IY+d) ← n • • • • • • 11 111 101 FD 4 5 19

00 110 110 36

← d →
← n →

LD A,(BC) A ← (BC) • • • • • • 00 001 010 0A 1 2 7

LD A,(DE) A ← (DE) • • • • • • 00 011 010 1A 1 2 7

LD A,(nn) A ← (nn) • • • • • • 00 111 010 3A 3 4 13

← n →
← n →

LD (BC),A (BC) ← A • • • • • • 00 000 010 02 1 2 7

LD (DE),A (DE) ← A • • • • • • 00 010 010 12 1 2 7

LD (nn),A (nn) ← A • • • • • • 00 110 010 32 3 4 13

← n →
← n →

Notes: r, r’ = any one of the CPU 8-bit registers A, B, C, D, E, H, L.

n = 8-bit value in range 0..255.

nn = 16-bit value in range 0..65,535.

d = 8-bit signed value in range -128..+127.

• = the flag is unchanged by the operation.
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C.2 Data transfer instructions (16-bit)

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

LD dd,nn dd ← nn • • • • • • 00 dd0 001 3 3 10
dd Reg.

00 BC

01 DE

10 HL

11 SP

← n →
← n →

LD IX,nn IX ← nn • • • • • • 11 011 101 DD 4 4 14

00 100 001 21

← n →
← n →

LD IY,nn IY ← nn • • • • • • 11 111 101 FD 4 4 14

00 100 001 21

← n →
← n →

LD HL,(nn) L ← (nn) • • • • • • 00 101 010 2A 3 5 16

H ← (nn+1) ← n →
← n →

LD dd,(nn) ddL ← (nn) • • • • • • 11 101 101 ED 4 6 20

ddH ← (nn+1) 01 dd1 011

← n →
← n →

LD IX,(nn) IXL ← (nn) • • • • • • 11 011 101 DD 4 6 20

IXH ← (nn+1) 00 101 010 2A

← n →
← n →

LD IY,(nn) IYL ← (nn) • • • • • • 11 111 101 FD 4 6 20

IYH ← (nn+1) 00 101 010 2A

← n →
← n →

LD (nn),HL (nn) ← L • • • • • • 00 100 010 22 3 5 16

(nn+1) ← H ← n →
← n →

LD (nn),dd (nn) ← ddL • • • • • • 11 101 101 DD 4 6 20

(nn+1) ← ddH 01 dd0 011

← n →
← n →

LD (nn),IX (nn) ← IXL • • • • • • 11 011 101 DD 4 6 20

(nn+1) ← IXH 00 100 010 22

← n →
← n →

LD (nn),IY (nn) ← IYL • • • • • • 11 111 101 FD 4 6 20

(nn+1) ← IYH 00 100 010 22

← n →
← n →

(cont.)
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Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

LD SP,HL SP ← HL • • • • • • 11 111 001 F9 1 1 6

LD SP,IX SP ← IX • • • • • • 11 011 101 DD 2 2 10

11 111 001 F9

LD SP,IY SP ← IY • • • • • • 11 111 101 FD 2 2 10

11 111 001 F9

EX DE,HL DE↔HL • • • • • • 11 101 011 EB 1 1 4

EX (SP),HL H↔(SP+1) • • • • • • 11 100 011 E3 1 5 19

L↔(SP)

PUSH qq SP ← SP-1 • • • • • • 11 qq0 101 1 3 11
qq Reg.

00 BC

01 DE

10 HL

11 AF

(SP) ← qqH

SP ← SP-1

(SP) ← qqL

PUSH IX SP ← SP-1 • • • • • • 11 011 101 DD 2 4 15

(SP) ← IXH 11 100 101 E5

SP ← SP-1

(SP) ← IXL

PUSH IY SP ← SP-1 • • • • • • 11 111 101 FD 2 4 15

(SP) ← IYH 11 100 101 E5

SP ← SP-1

(SP) ← IYL

POP qq qqL ← (SP) • • • • • • 11 qq0 001 1 3 10

SP ← SP+1

qqH ← (SP)

SP ← SP+1

POP IX IXL ← (SP) • • • • • • 11 011 101 DD 2 4 14

SP ← SP+1 11 100 001 E1

IXH ← (SP)

SP ← SP+1

POP IY IYL ← (SP) • • • • • • 11 111 101 FD 2 4 14

SP ← SP+1 11 100 001 E1

IYH ← (SP)

SP ← SP+1

Notes: dd = any one of the CPU 16-bit registers BC, DE, HL, SP.

qq = any one of the CPU 16-bit registers BC, DE, HL, AF.

n = 8-bit value in range 0..255.

nn = 16-bit value in range 0..65,535.

• = the flag is unchanged by the operation.
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C.3 Arithmetic and logic instructions (8-bit)

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

ADD A,r A ← A+r l l l V 0 l 10 000 r 1 1 4
r Reg.

000 B

001 C

010 D

011 E

100 H

101 L

111 A

ADD A,n A ← A+n l l l V 0 l 11 000 110 2 2 7

← n →
ADD A,(HL) A ← A+(HL) l l l V 0 l 10 000 110 1 2 7

ADD A,(IX+d) A ← A+(IX+d) l l l V 0 l 11 011 101 DD 3 5 19

10 000 110

← d →
ADD A,(IY+d) A ← A+(IY+d) l l l V 0 l 11 111 101 FD 3 5 19

10 000 110

← d →
ADC A,r A ← A+r+CY l l l V 0 l 10 001 r 1 1 4

ADC A,n A ← A+n+CY l l l V 0 l 11 001 110 2 2 7

← n →
ADC A,(HL) A ← A+(HL)+CY l l l V 0 l 10 001 110 1 2 7

ADC A,(IX+d) A ← A+(IX+d)+CY l l l V 0 l 11 011 101 DD 3 5 19

10 001 110

← d →
ADC A,(IY+d) A ← A+(IY+d)+CY l l l V 0 l 11 111 101 FD 3 5 19

10 001 110

← d →
SUB r A ← A-r l l l V 1 l 10 010 r 1 1 4

SUB n A ← A-n l l l V 1 l 11 010 110 2 2 7

← n →
SUB (HL) A ← A-(HL) l l l V 1 l 10 010 110 1 2 7

SUB (IX+d) A ← A-(IX+d) l l l V 1 l 11 011 101 DD 3 5 19

10 010 110

← d →
SUB (IY+d) A ← A-(IY+d) l l l V 1 l 11 111 101 FD 3 5 19

10 010 110

← d →
SBC A,r A ← A-r-CY l l l V 1 l 10 011 r 1 1 4

SBC A,n A ← A-n-CY l l l V 1 l 11 011 110 2 2 7

← n →
SBC A,(HL) A ← A-(HL)-CY l l l V 1 l 10 011 110 1 2 7

SBC A,(IX+d) A ← A-(IX+d)-CY l l l V 1 l 11 011 101 DD 3 5 19

10 011 110

← d →
SBC A,(IY+d) A ← A-(IY+d)-CY l l l V 1 l 11 111 101 FD 3 5 19

10 011 110

← d →
(cont.)
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Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

CP r A-r l l l V 1 l 10 111 r 1 1 4

CP n A-n l l l V 1 l 11 111 110 2 2 7

← n →
CP (HL) A-(HL) l l l V 1 l 10 111 110 1 2 7

CP (IX+d) A-(IX+d) l l l V 1 l 11 011 101 DD 3 5 19

10 111 110

← d →
CP (IY+d) A-(IY+d) l l l V 1 l 11 111 101 FD 3 5 19

10 111 110

← d →
AND r A ← A and r l l 1 P 0 0 10 100 r 1 1 4

AND n A ← A and n l l 1 P 0 0 11 100 110 2 2 7

← n →
AND (HL) A ← A and (HL) l l 1 P 0 0 10 100 110 1 2 7

AND (IX+d) A ← A and (IX+d) l l 1 P 0 0 11 011 101 DD 3 5 19

10 100 110

← d →
AND (IY+d) A ← A and (IY+d) l l 1 P 0 0 11 111 101 FD 3 5 19

10 100 110

← d →
OR r A ← A or r l l 1 P 0 0 10 110 r 1 1 4

OR n A ← A or n l l 1 P 0 0 11 110 110 2 2 7

← n →
OR (HL) A ← A or (HL) l l 1 P 0 0 10 110 110 1 2 7

OR (IX+d) A ← A or (IX+d) l l 1 P 0 0 11 011 101 DD 3 5 19

10 110 110

← d →
OR (IY+d) A ← A or (IY+d) l l 1 P 0 0 11 111 101 FD 3 5 19

10 110 110

← d →
XOR r A ← A xor r l l 1 P 0 0 10 101 r 1 1 4

XOR n A ← A xor n l l 1 P 0 0 11 101 110 2 2 7

← n →
XOR (HL) A ← A xor (HL) l l 1 P 0 0 10 101 110 1 2 7

XOR (IX+d) A ← A xor (IX+d) l l 1 P 0 0 11 011 101 DD 3 5 19

10 101 110

← d →
XOR (IY+d) A ← A xor (IY+d) l l 1 P 0 0 11 111 101 FD 3 5 19

10 101 110

← d →
(cont.)
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Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

INC r r ← r+1 l l l V 0 • 00 r 100 1 1 4

INC (HL) (HL) ← (HL)+1 l l l V 0 • 00 110 100 1 3 11

INC (IX+d) (IX+d) ← (IX+d)+1 l l l V 0 • 11 011 101 DD 3 6 23

00 110 100

← d →
INC (IY+d) (IY+d) ← (IY+d)+1 l l l V 0 • 11 111 101 FD 3 6 23

00 110 100

← d →
DEC r r ← r-1 l l l V 1 • 00 r 101 1 1 4

DEC (HL) (HL) ← (HL)-1 l l l V 1 • 00 110 101 1 3 11

DEC (IX+d) (IX+d) ← (IX+d) -1 l l l V 1 • 11 011 101 DD 3 6 23

00 110 101

← d →
DEC (IY+d) (IY+d) ← (IY+d)-1 l l l V 1 • 11 111 101 FD 3 6 23

00 110 101

← d →
DAA Convert A content l l l P • l 00 100 111 27 1 1 4

into “packed BCD”,

following add or

subtract with packed

BCD operands

CPL A ← A • • 1 • 1 • 00 101 111 2F 1 1 4 One’s

compl.

NEG A ← A+1 l l l V 1 l 11 101 101 ED 2 2 8 Two’s

01 000 100 44 compl.

Notes: The V symbol in the P/V column of flags indicates that this flag reports

the operation overflow (V = 1).

Similarly, the symbol P indicates parity even (P = 1) or odd (P = 0).

• = the flag is unchanged by the operation.

0 = the flag is reset by the operation.

1 = the flag is set by the operation.

l = the flag is affected according to the result of the operation.

r = any one of the CPU 8-bit registers A, B, C, D, E, H, L.

n = 8-bit value in range 0..255.

d = 8-bit signed value in range -128..+127.

CY = the Carry flag.

compl. = complement.
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C.4 Arithmetic instructions (16-bit)

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

ADD HL,ss HL ← HL+ss • • l2 • 0 l1 00 ss1 001 1 3 11 ss Reg.

00 BC

01 DE

10 HL

11 SP

pp Reg.

00 BC

01 DE

10 IX

11 SP

rr Reg.

00 BC

01 DE

10 IY

11 SP

ADC HL,ss HL ← HL+ss+CY l1 l1 l2 V1 0 l1 11 101 101 ED 2 4 15

01 ss1 010

SBC HL,ss HL ← HL-ss-CY l1 l1 l2 V1 1 l1 11 101 101 ED 2 4 15

01 ss0 010

ADD IX,pp IX ← IX+pp • • l2 • 0 l1 11 011 101 DD 2 4 15

00 pp1 001

ADD IY,rr IY ← IY+rr • • l2 • 0 l1 11 111 101 FD 2 4 15

00 rr1 001

INC ss ss ← ss+1 • • • • • • 00 ss0 011 1 1 6

INC IX IX ← IX+1 • • • • • • 11 011 101 DD 2 2 10

00 100 011 23

INC IY IY ← IY+1 • • • • • • 11 111 101 FD 2 2 10

00 100 011 23

DEC ss ss ← ss-1 • • • • • • 00 ss1 011 1 1 6

DEC IX IX ← IX-1 • • • • • • 11 011 101 DD 2 2 10

00 101 011 2B

DEC IY IY ← IY-1 • • • • • • 11 111 101 FD 2 2 10

00 101 011 2B

Notes: The V symbol in the P/V column of flags indicates that this flag reports

the operation overflow (V = 1).
1 The flag is affected by the 16-bit result of the operation.
2 The flag is affected by the higher 8-bit result of the operation.

• = the flag is unchanged by the operation.

0 = the flag is reset by the operation.

1 = the flag is set by the operation.

l = the flag is affected according to the result of the operation.

ss = any one of the CPU 16-bit registers BC, DE, HL, SP.

pp = any one of the CPU 16-bit registers BC, DE, IX, SP.

rr = any one of the CPU 16-bit registers BC, DE, IY, SP.

The 16-bit additions are executed by adding the two least significant bytes

first, and then the two most significant bytes.

CY = the Carry flag.
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C.5 Rotate and shift instructions

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

RLCA • • 0 • 0 l 00 000 111 07 1 1 4

RLA • • 0 • 0 l 00 010 111 17 1 1 4

RRCA • • 0 • 0 l 00 001 111 0F 1 1 4

RRA • • 0 • 0 l 00 011 111 1F 1 1 4

RLC r l l 0 P 0 l 11 001 011 CB 2 2 8 r Reg.

000 B

001 C

010 D

011 E

100 H

101 L

111 A

00 000 r

RLC (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 000 110

RLC (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 000 110

RLC (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 000 110

RL r l l 0 P 0 l 11 001 011 CB 2 2 8

00 010 r

RL (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 010 110

RL (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 010 110

RL (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 010 110

RRC r l l 0 P 0 l 11 001 011 CB 2 2 8

00 001 r

RRC (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 001 110

(cont.)
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Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

RRC (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 001 110

RRC (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 001 110

RR r l l 0 P 0 l 11 001 011 CB 2 2 8

00 011 r

RR (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 011 110

RR (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 011 110

RR (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 011 110

RLD l l 0 P 0 • 11 101 101 ED 2 5 18

01 101 111 6F

RRD l l 0 P 0 • 11 101 101 ED 2 5 18

01 100 111 67

SLA r l l 0 P 0 l 11 001 011 CB 2 2 8 r Reg.

000 B

001 C

010 D

011 E

100 H

101 L

111 A

00 100 r

SLA (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 100 110

SLA (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 100 110

SLA (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 100 110

(cont.)
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Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

SRA r l l 0 P 0 l 11 001 011 CB 2 2 8

00 101 r

SRA (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 101 110

SRA (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 101 110

SRA (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 101 110

SRL r l l 0 P 0 l 11 001 011 CB 2 2 8

00 111 r

SRL (HL) l l 0 P 0 l 11 001 011 CB 2 4 15

00 111 110

SRL (IX + d) l l 0 P 0 l 11 011 101 DD 4 6 23

11 001 011 CB

← d →
00 111 110

SRL (IY + d) l l 0 P 0 l 11 111 101 FD 4 6 23

11 001 011 CB

← d →
00 111 110

Notes: The P symbol in the P/V column of flags indicates that this flag

reports the parity even (P = 1) or odd (P = 0) of the result.

• = the flag is unchanged by the operation.

0 = the flag is reset by the operation.

1 = the flag is set by the operation.

l = the flag is affected according to the result of the operation.

CY = the Carry flag.

r = any one of the CPU 8-bit registers A, B, C, D, E, H, L.

d = 8-bit signed value in range -128..+127.
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C.6 Bit manipulation instructions

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

BIT b,r Z ← rb X l 1 X 0 • 11 001 011 CB 2 2 8 r Reg

000 B

001 C

010 D

011 E

100 H

101 L

111 A

b Bit

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

01 b r

BIT b,(HL) Z ← (HL)b X l 1 X 0 • 11 001 011 CB 2 3 12

01 b 110

BIT b,(IX+d) Z ← (IX+d)b X l 1 X 0 • 11 011 101 DD 4 5 20

11 001 011 CB

← d →
01 b 110

BIT b,(IY+d) Z ← (IY+d)b X l 1 X 0 • 11 111 101 CB 4 5 20

11 001 011 FD

← d →
01 b 110

SET b,r rb ← 1 • • • • • • 11 001 011 CB 2 2 8

11 b r

SET b,(HL) (HL)b ← 1 • • • • • • 11 001 011 CB 2 4 15

11 b 110

SET b,(IX+d) (IX+d)b ← 1 • • • • • • 11 011 101 DD 4 6 23

11 001 011 CB

← d →
11 b 110

SET b,(IY+d) (IY+ d)b ← 1 • • • • • • 11 111 101 FD 4 6 23

11 001 011 CB

← d →
11 b 110

RES b,r rb ← 0 • • • • • • 11 001 011 CB 2 2 8

10 b r

RES b,(HL) (HL)b ← 0 • • • • • • 11 001 011 CB 2 4 15

10 b 110

RES b,(IX+d) (IX+ d)b ← 0 • • • • • • 11 011 101 DD 4 6 23

11 001 011 CB

← d →
10 b 110

RES b,(IY+d) (IY+ d)b ← 0 • • • • • • 11 111 101 FD 4 6 23

11 001 011 CB

← d →
10 b 110

Notes: The notation rb indicates the bit b (0..7) of register r.

The notations (HL)b, (IX+d)b and (IY+d)b indicate the bit b (0..7)

of the memory location referred by the specified addressing mode.

BIT instructions are executed using a bitwise AND operation.

• = the flag is unchanged by the operation.

0 = the flag is reset by the operation.

1 = the flag is set by the operation.

X = the flag is a “don’t care” and can assume any value.

l = the flag is affected according to the result of the operation.

r = any one of the CPU 8-bit registers A, B, C, D, E, H, L.

d = 8-bit signed value in range -128..+127.
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C.7 Jump instructions

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

JP nn PC ← nn • • • • • • 11 000 011 C3 3 3 10

← n →
← n →

JP cc,nn if cc is true, • • • • • • 11 cc 010 3 3 10 cc Cond.

000 NZ

001 Z

010 NC

011 C

100 PO

101 PE

110 P

111 M

PC ← nn, ← n →
otherwise ← n →
continue

JP (HL) PC ← HL • • • • • • 11 101 001 E9 1 1 4

JP (IX) PC ← IX • • • • • • 11 011 101 DD 2 2 8

11 101 001 E9

JP (IY) PC ← IY • • • • • • 11 111 101 FD 2 2 8

11 101 001 E9

Notes: Cond. = condition (one among the following):

NZ = non zero; Z = zero;

NC = non carry; C = carry;

PO = parity odd; PE = parity even;

P = sign positive; M = sign negative.

n = 8-bit value in range 0..255.

nn = 16-bit value in range 0..65,535.

• = the flag is unchanged by the operation.



612 C DMC8 instruction set tables

C.8 Subprogram call and return instructions

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

CALL nn SP ← SP-1 • • • • • • 11 001 101 CD 3 5 17

(SP) ← PCH ← n →
SP ← SP-1 ← n →
(SP) ← PCL

PC ← nn

CALL cc,nn if cc is true, • • • • • • 11 cc 100 3 3 10 if cc is false

SP ← SP-1 ← n → 3 5 17 if cc is true

(SP) ← PCH ← n →
SP ← SP-1

cc Cond.

000 NZ

001 Z

010 NC

011 C

100 PO

101 PE

110 P

111 M

(SP) ← PCL

PC ← nn,

otherwise

continue

RET PCL ← (SP) • • • • • • 11 001 001 C9 1 3 10

SP ← SP+1

PCH ← (SP)

SP ← SP+1

RET cc if cc is true, • • • • • • 11 cc 000 1 1 5 if cc is false

PCL ← (SP) 1 3 11 if cc is true

SP ← SP+1

PCH ← (SP)

SP ← SP+1,

otherwise

continue

RST p SP ← SP-1 • • • • • • 11 t 111 1 3 11 t p

000 0000h

001 0008h

010 0010h

011 0018h

100 0020h

101 0028h

110 0030h

111 0038h

(SP) ← PCH

SP ← SP-1

(SP) ← PCL

PC ← p

Notes: Cond. = condition (one among the following):

NZ = non zero; Z = zero;

NC = non carry; C = carry;

PO = parity odd; PE = parity even;

P = sign positive; M = sign negative.

n = 8-bit value in range 0..255.

nn = 16-bit value in range 0..65,535.

• = the flag is unchanged by the operation.
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C.9 Input/output instructions

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

IN A,(n) A ← (n) • • • • • • 11 011 011 DB 2 3 11 r Reg.

000 B

001 C

010 D

011 E

100 H

101 L

111 A

← n →
IN r,(C) r ← (C) l l 0 P 0 • 11 101 101 ED 2 3 12

01 r 000

OUT (n),A (n) ← A • • • • • • 11 010 011 D3 2 3 11

← n →
OUT (C),r (C) ← r • • • • • • 11 101 101 ED 2 3 12

01 r 001

Notes: The P symbol in the P/V column of flags indicates that this flag

reports the parity even (P = 1) or odd (P = 0) of the result.

• = the flag is unchanged by the operation.

0 = the flag is reset by the operation.

1 = the flag is set by the operation.

l = the flag is affected according to the result of the operation.

n = 8-bit value in range 0..255.

r = any one of the CPU 8-bit registers A, B, C, D, E, H, L.
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C.10 CPU control instructions

Mnemonic Symbolic Flag Opcode Hex #B #M #K Comments

Operation S Z H P/V N C 76 543 210

CCF CY ← CY • • X • 0 l 00 111 111 3F 1 1 4 Complement

carry flag

SCF CY ← 1 • • 0 • 0 1 00 110 111 37 1 1 4

NOP No Operation • • • • • • 00 000 000 00 1 1 4

HALT CPU halted • • • • • • 01 110 110 76 1 1 4

DI1 IFF ← 0 • • • • • • 11 110 011 F3 1 1 4

EI1 IFF ← 1 • • • • • • 11 111 011 FB 1 1 4

Notes: CY = the Carry flag.

• = the flag is unchanged by the operation.

0 = the flag is reset by the operation.

1 = the flag is set by the operation.

X = the flag is a “don’t care” and can assume any value.

l = the flag is affected according to the result of the operation.
1 No interrupt is generated due to the execution of DI or EI instructions.
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